This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ellen Macarthur Foundation. (2014). Economic and business rationale. Toward the circular economy, (p. 98).Ellen Macarthur Foundation2014Economic and business rationaleToward the circular economy98Search in Google Scholar
K. Winans, A. Kendall, H. Deng, The history and current applications of the circular economy concept, Renew. Sustain. Energy Rev. 68 (2017) 825–83, https://doi.org/10.1016/j.rser.2016.09.123.WinansK.KendallA.DengH.The history and current applications of the circular economy conceptRenew. Sustain. Energy Rev.68201782583https://doi.org/10.1016/j.rser.2016.09.123.10.1016/j.rser.2016.09.123Search in Google Scholar
Global Carbon Budget 2019, Global Carbon Project, https://www.globalcarbonproject.org/carbonbudget/19/files/GCP_CarbonBudget_2019.pptx.Global Carbon Budget2019Global Carbon Projecthttps://www.globalcarbonproject.org/carbonbudget/19/files/GCP_CarbonBudget_2019.pptx.Search in Google Scholar
V. Alizadeh, S. Helwany, A. Ghorbanpoor, M. Oliva, R. Ghaderi, CLSM bridge abutments – Finite element modeling and parametric study, Comput. Geotech. 64 (2015) 61–71, https://doi.org/10.1016/j.compgeo.2014.10.015.AlizadehV.HelwanyS.GhorbanpoorA.OlivaM.GhaderiR.CLSM bridge abutments – Finite element modeling and parametric studyComput. Geotech.6420156171https://doi.org/10.1016/j.compgeo.2014.10.015.10.1016/j.compgeo.2014.10.015Search in Google Scholar
V. Alizadeh, New approach for proportioning of controlled low strength materials, Constr. Build. Mater. 201 (2019) 871–878. https://doi.org/10.1016/j.conbuildmat.2018.12.041.AlizadehV.New approach for proportioning of controlled low strength materialsConstr. Build. Mater.2012019871878https://doi.org/10.1016/j.conbuildmat.2018.12.041.10.1016/j.conbuildmat.2018.12.041Search in Google Scholar
T. Manh Do, G.O. Kang, Y. sang Kim, Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products, Constr. Build. Mater. 206 (2019) 576–589. https://doi.org/10.1016/j.conbuildmat.2019.02.088.Manh DoT.KangG.O.sang KimY.Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-productsConstr. Build. Mater.2062019576589https://doi.org/10.1016/j.conbuildmat.2019.02.088.10.1016/j.conbuildmat.2019.02.088Search in Google Scholar
S.K. Kaliyavaradhan, T.C. Ling, M.Z. Guo, K.H. Mo, Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties, J. Environ. Manage. 241 (2019) 383–396. https://doi.org/10.1016/j.jenvman.2019.03.017.KaliyavaradhanS.K.LingT.C.GuoM.Z.MoK.H.Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic propertiesJ. Environ. Manage.2412019383396https://doi.org/10.1016/j.jenvman.2019.03.017.10.1016/j.jenvman.2019.03.01731028969Search in Google Scholar
J.G. Jang, S.M. Park, S. Chung, J.W. Ahn, H.K. Kim, Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator, Constr. Build. Mater. 159 (2018) 642–651. https://doi.org/10.1016/j.conbuildmat.2017.08.158.JangJ.G.ParkS.M.ChungS.AhnJ.W.KimH.K.Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activatorConstr. Build. Mater.1592018642651https://doi.org/10.1016/j.conbuildmat.2017.08.158.10.1016/j.conbuildmat.2017.08.158Search in Google Scholar
S.M. Park, N.K. Lee, H.K. Lee, Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation, Constr. Build. Mater. 156 (2017) 728–738. https://doi.org/10.1016/j.conbuildmat.2017.09.001.ParkS.M.LeeN.K.LeeH.K.Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activationConstr. Build. Mater.1562017728738https://doi.org/10.1016/j.conbuildmat.2017.09.001.10.1016/j.conbuildmat.2017.09.001Search in Google Scholar
C.L. Hwang, C.H. Chiang, T.P. Huynh, D.H. Vo, B.J. Jhang, S.H. Ngo, Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag, Constr. Build. Mater. 135 (2017) 459–471. https://doi.org/10.1016/j.conbuildmat.2017.01.014.HwangC.L.ChiangC.H.HuynhT.P.VoD.H.JhangB.J.NgoS.H.Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slagConstr. Build. Mater.1352017459471https://doi.org/10.1016/j.conbuildmat.2017.01.014.10.1016/j.conbuildmat.2017.01.014Search in Google Scholar
T.R. Naik, R.N. Kraus, R. Siddique, Controlled Low-Strength Materials Containing Mixtures of Coal Ash and New Pozzolanic Material, ACI Mater. J. 100 (2003) 208–215, https://doi.org/10.14359/12621.NaikT.R.KrausR.N.SiddiqueR.Controlled Low-Strength Materials Containing Mixtures of Coal Ash and New Pozzolanic MaterialACI Mater. J.1002003208215https://doi.org/10.14359/12621.10.14359/12621Search in Google Scholar
N. K. Lee, H. K. Kim, I. S. Park, H. K. Lee, Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products, Constr. Build. Mater. 49 (2013) 738–746, https://doi.org/10.1016/j.conbuildmat.2013.09.002.LeeN. K.KimH. K.ParkI. S.LeeH. K.Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-productsConstr. Build. Mater.492013738746https://doi.org/10.1016/j.conbuildmat.2013.09.002.10.1016/j.conbuildmat.2013.09.002Search in Google Scholar
V. Alizadeh, S. Helwany, A. Ghorbanpoor, K. Sobolev, Design and application of controlled low strength materials as a structural fill, Constr. Build. Mater. 53 (2014) 425–431, https://doi.org/10.1016/j.conbuildmat.2013.12.006.AlizadehV.HelwanyS.GhorbanpoorA.SobolevK.Design and application of controlled low strength materials as a structural fillConstr. Build. Mater.532014425431https://doi.org/10.1016/j.conbuildmat.2013.12.006.10.1016/j.conbuildmat.2013.12.006Search in Google Scholar
R. Siddique, Utilization of waste materials and byproducts in producing controlled low-strength materials, Resour. Conserv. Recycl. 54 (2009) 1–8, https://doi.org/10.1016/j.resconrec.2009.06.001.SiddiqueR.Utilization of waste materials and byproducts in producing controlled low-strength materialsResour. Conserv. Recycl.54200918https://doi.org/10.1016/j.resconrec.2009.06.001.10.1016/j.resconrec.2009.06.001Search in Google Scholar
M. Etxeberria, J. Ainchil, M.E. Pérez, A. González, Use of recycled fine aggregates for Control Low Strength Materials (CLSMs) production, Constr. Build. Mater. 44 (2013) 142–148, https://doi.org/10.1016/j.conbuildmat.2013.02.059.EtxeberriaM.AinchilJ.PérezM.E.GonzálezA.Use of recycled fine aggregates for Control Low Strength Materials (CLSMs) productionConstr. Build. Mater.442013142148https://doi.org/10.1016/j.conbuildmat.2013.02.059.10.1016/j.conbuildmat.2013.02.059Search in Google Scholar
M. C. Nataraja, Y. Nalanda, Performance of industrial by-products in controlled low-strength materials (CLSM), Waste Manag. 28 (2008) 1168–1181, https://doi.org/10.1016/j.wasman.2007.03.030.NatarajaM. C.NalandaY.Performance of industrial by-products in controlled low-strength materials (CLSM)Waste Manag.28200811681181https://doi.org/10.1016/j.wasman.2007.03.030.10.1016/j.wasman.2007.03.03017582753Search in Google Scholar
V. Alizadeh, Analytical study for allowable bearing pressures of CLSM bridge abutments, Transp. Geotech. 21 (2019) 100271, https://doi.org/10.1016/j.trgeo.2019.100271.AlizadehV.Analytical study for allowable bearing pressures of CLSM bridge abutmentsTransp. Geotech.212019100271https://doi.org/10.1016/j.trgeo.2019.100271.10.1016/j.trgeo.2019.100271Search in Google Scholar
T.M. Do, G.O. Kang, Y.S. Kim, Thermal conductivity of controlled low strength material (CLSM) under various degrees of saturation using a modified pressure plate extractor apparatus – a case study for geothermal systems, Appl. Therm. Eng. 143 (2018) 607–613, https://doi.org/10.1016/j.applthermaleng.2018.07.116.DoT.M.KangG.O.KimY.S.Thermal conductivity of controlled low strength material (CLSM) under various degrees of saturation using a modified pressure plate extractor apparatus – a case study for geothermal systemsAppl. Therm. Eng.1432018607613https://doi.org/10.1016/j.applthermaleng.2018.07.116.10.1016/j.applthermaleng.2018.07.116Search in Google Scholar
T.M. Do, A.N. Do, G.O. Kang, Y.S. Kim, Utilization of marine dredged soil in controlled low-strength material used as a thermal grout in geothermal systems, Constr. Build. Mater. 215 (2019) 613–622, https://doi.org/10.1016/j.conbuildmat.2019.04.255.DoT.M.DoA.N.KangG.O.KimY.S.Utilization of marine dredged soil in controlled low-strength material used as a thermal grout in geothermal systemsConstr. Build. Mater.2152019613622https://doi.org/10.1016/j.conbuildmat.2019.04.255.10.1016/j.conbuildmat.2019.04.255Search in Google Scholar
E. Miren, A. Javier, P.M. Eugenia, G. Alain, Use of recycled fine aggregates for control low strength materials (CLSMs) production, Constr. Build. Mater., 44 (2013), pp. 142–148.MirenE.JavierA.EugeniaP.M.AlainG.Use of recycled fine aggregates for control low strength materials (CLSMs) productionConstr. Build. Mater.44201314214810.1016/j.conbuildmat.2013.02.059Search in Google Scholar
Development of a Recommended Practice for Use of Controlled Low-Strength Material in Highway Construction, Dev. a Recomm. Pract. Use Control. Low-Strength Mater. Highw. Constr. (2008), https://doi.org/10.17226/13900.Development of a Recommended Practice for Use of Controlled Low-Strength Material in Highway ConstructionDev. a Recomm. Pract. Use Control. Low-Strength Mater. Highw. Constr.2008https://doi.org/10.17226/13900.10.17226/13900Search in Google Scholar
T.C. Ling, S.K. Kaliyavaradhan, C.S. Poon, Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - an overview, Constr. Build. Mater., 158 (2018), 535–548, https://doi.org/10.1016/j.conbuildmat.2017.10.050.LingT.C.KaliyavaradhanS.K.PoonC.S.Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - an overviewConstr. Build. Mater.1582018535548https://doi.org/10.1016/j.conbuildmat.2017.10.050.10.1016/j.conbuildmat.2017.10.050Search in Google Scholar
M. Lachemi, M. Şahmaran, K. M. A. Hossain, A. Lotfy, M. Shehata, Properties of controlled low-strength materials incorporating cement kiln dust and slag, Cem. Concr. Compos. 32 (2010) 623–629, https://doi.org/10.1016/j.cemconcomp.2010.07.011.LachemiM.ŞahmaranM.HossainK. M. A.LotfyM.Shehata, Properties of controlled low-strength materials incorporating cement kiln dust and slagCem. Concr. Compos.322010623629https://doi.org/10.1016/j.cemconcomp.2010.07.011.10.1016/j.cemconcomp.2010.07.011Search in Google Scholar
Shulin Li, The Research on Quantitative Evaluation of Circular Economy Based on Waste Input-Output Analysis, Procedia Environ. Sci. 12 (2012) 65–71, https://doi.org/10.1016/j.proenv.2012.01.248.LiShulinThe Research on Quantitative Evaluation of Circular Economy Based on Waste Input-Output AnalysisProcedia Environ. Sci.1220126571https://doi.org/10.1016/j.proenv.2012.01.248.10.1016/j.proenv.2012.01.248Search in Google Scholar
G. Sheng, J. Zhai, Q. Li, F. Li, Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement, Fuel. 86 (2007) 2625–2631, https://doi.org/10.1016/j.fuel.2007.02.018.ShengG.ZhaiJ.LiQ.LiF.Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cementFuel.86200726252631https://doi.org/10.1016/j.fuel.2007.02.018.10.1016/j.fuel.2007.02.018Search in Google Scholar
R. Conn, K. Sellakumar, A. Bland, Utilization of CFB fly ash for construction applications, Proc. 15th Int. Conf. Fluid. Bed Combust. (1999).ConnR.SellakumarK.BlandA.Utilization of CFB fly ash for construction applicationsProc. 15th Int. Conf. Fluid. Bed Combust.1999Search in Google Scholar
Formosa Petrochemical Corp, Promotional Report of Reuse Technology and Applications of By-Product Gypsum Mixed with Fly Ash; Annu. Rep. (2005).Formosa Petrochemical CorpPromotional Report of Reuse Technology and Applications of By-Product Gypsum Mixed with Fly AshAnnu. Rep.2005Search in Google Scholar
H.D. Weng, Circulating fluidized bed boiler technology. Chem. Technol. 6 (1998) 180–193.WengH.D.Circulating fluidized bed boiler technologyChem. Technol61998180193Search in Google Scholar
N.M. Jackson, R. Mack, S. Schultz, M. Malek, Pavement Subgrade Stabilization and Construction Using Bed and Fly Ash, Proc. Word Coal Ash. (2007) 1–12.JacksonN.M.MackR.SchultzS.MalekM.Pavement Subgrade Stabilization and Construction Using Bed and Fly AshProc. Word Coal Ash.2007112Search in Google Scholar
C.. Lin, G.; Wu, Study on comprehensive utilization of high-sulphidation ash from CFB boiler. Environ, Sci. Technol. 26 (2003) 62–63.LinC.WuG.Study on comprehensive utilization of high-sulphidation ash from CFB boilerEnviron, Sci. Technol.2620036263Search in Google Scholar
Han, X.; Li, Q.; Niu, M.; Huang, Y.; Jiang, X, Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 1. system and key issues, Oil Shale 31 (2014) 42–53.HanX.LiQ.NiuM.HuangY.JiangXCombined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 1. system and key issuesOil Shale312014425310.3176/oil.2014.1.05Search in Google Scholar
Weilong Song, Zhiduo Zhu, Shaoyun Pu, Yu Wan, Wangwen Huo, Shigong Song, Jun Zhang, Kai Yao, Lele Hu, efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends, Construction and Building Materials, 259(2020), 1–13, https://doi.org/10.1016/j.conbuildmat.2020.119814.SongWeilongZhuZhiduoPuShaoyunWanYuHuoWangwenSongShigongZhangJunYaoKaiHuLeleefficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blendsConstruction and Building Materials2592020113https://doi.org/10.1016/j.conbuildmat.2020.119814.10.1016/j.conbuildmat.2020.119814Search in Google Scholar
Suman Saha, C. Rajasekaran, Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag, Construction and Building Materials, 146 (2017), 615–620, http://dx.doi.org/10.1016/j.conbuildmat.2017.04.139SahaSumanRajasekaranC.Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slagConstruction and Building Materials,1462017615620http://dx.doi.org/10.1016/j.conbuildmat.2017.04.13910.1016/j.conbuildmat.2017.04.139Search in Google Scholar
Xiaobin Wei, Dongqing Li, Feng Ming, Chengsong Yang, Lei Chen, Yuhang Liu, Influence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortar, Cement and Concrete Composites, 269(2021), 1–14, https://doi.org/10.1016/j.conbuildmat.2020.121811WeiXiaobinLiDongqingMingFengYangChengsongChenLeiLiuYuhangInfluence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortarCement and Concrete Composites2692021114https://doi.org/10.1016/j.conbuildmat.2020.12181110.1016/j.conbuildmat.2020.121811Search in Google Scholar
B.W. Ramme, C.F. Scholer, ACI 229R-99 Controlled Low-Strength Materials Reported by ACI Committee 229, Concrete. (n.d.), 1–15.RammeB.W.ScholerC.F.ACI 229R-99 Controlled Low-Strength Materials Reported by ACI Committee 229, Concrete(n.d.),115Search in Google Scholar
A. Katz, K. Kovler, Utilization of industrial by-products for the production of controlled low strength (CLSM), Waste Manag. 24 (2004), 501–512, https://doi.org/10.1016/S0956-053X(03)00134-X.KatzA.KovlerK.Utilization of industrial by-products for the production of controlled low strength (CLSM)Waste Manag.242004501512https://doi.org/10.1016/S0956-053X(03)00134-X.10.1016/S0956-053X(03)00134-XSearch in Google Scholar
C.S. Shon, A.K. Mukhopadhyay, D. Saylak, D.G. Zollinger, G.G. Mejeoumov, Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture, Constr. Build. Mater. 24 (2010), 839–847, https://doi.org/10.1016/j.conbuildmat.2009.10.022.ShonC.S.MukhopadhyayA.K.SaylakD.ZollingerD.G.MejeoumovG.G.Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixtureConstr. Build. Mater.242010839847https://doi.org/10.1016/j.conbuildmat.2009.10.022.10.1016/j.conbuildmat.2009.10.022Search in Google Scholar
ASTM, Standard Specification for Slag Cement for Use in Concrete and Mortars, ASTM Stand. 44 (2013) 1–8, https://doi.org/10.1520/C0989.ASTMStandard Specification for Slag Cement for Use in Concrete and MortarsASTM Stand.44201318https://doi.org/10.1520/C0989.10.1520/C0989Search in Google Scholar
ACI Committee 229, Report on Controlled Low-Strength Materials, (2013) 22.ACI Committee 229Report on Controlled Low-Strength Materials201322Search in Google Scholar
ACI 237R, Self-Consolidating Concrete, American Concrete Institute, (2007).ACI 237RSelf-Consolidating ConcreteAmerican Concrete Institute2007Search in Google Scholar
ASTM C 311-04, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete., Annu. B. ASTM Stand. 04.02 (2005), 204–212.ASTM C 311-04Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete.Annu. B. ASTM Stand. 04.022005204212Search in Google Scholar
K. Chen, W.T. Lin, W. Liu. Microstructures and mechanical properties of sodium-silicate-activated slag/cofired fly ash cementless composites, J. Clean. Prod. 277 (2020) Article 124025, https://doi.org/10.1016/j.jclepro.2020.124025.ChenK.LinW.T.LiuW.Microstructures and mechanical properties of sodium-silicate-activated slag/cofired fly ash cementless compositesJ. Clean. Prod.2772020Article 124025, https://doi.org/10.1016/j.jclepro.2020.124025.10.1016/j.jclepro.2020.124025Search in Google Scholar