Accès libre

A study on the mixed properties of green controlled low strength cementitious

À propos de cet article

Citez

Ellen Macarthur Foundation. (2014). Economic and business rationale. Toward the circular economy, (p. 98). Ellen Macarthur Foundation 2014 Economic and business rationale Toward the circular economy 98 Search in Google Scholar

K. Winans, A. Kendall, H. Deng, The history and current applications of the circular economy concept, Renew. Sustain. Energy Rev. 68 (2017) 825–83, https://doi.org/10.1016/j.rser.2016.09.123. WinansK. KendallA. DengH. The history and current applications of the circular economy concept Renew. Sustain. Energy Rev. 68 2017 825 83 https://doi.org/10.1016/j.rser.2016.09.123. 10.1016/j.rser.2016.09.123 Search in Google Scholar

Global Carbon Budget 2019, Global Carbon Project, https://www.globalcarbonproject.org/carbonbudget/19/files/GCP_CarbonBudget_2019.pptx. Global Carbon Budget 2019 Global Carbon Project https://www.globalcarbonproject.org/carbonbudget/19/files/GCP_CarbonBudget_2019.pptx. Search in Google Scholar

V. Alizadeh, S. Helwany, A. Ghorbanpoor, M. Oliva, R. Ghaderi, CLSM bridge abutments – Finite element modeling and parametric study, Comput. Geotech. 64 (2015) 61–71, https://doi.org/10.1016/j.compgeo.2014.10.015. AlizadehV. HelwanyS. GhorbanpoorA. OlivaM. GhaderiR. CLSM bridge abutments – Finite element modeling and parametric study Comput. Geotech. 64 2015 61 71 https://doi.org/10.1016/j.compgeo.2014.10.015. 10.1016/j.compgeo.2014.10.015 Search in Google Scholar

V. Alizadeh, New approach for proportioning of controlled low strength materials, Constr. Build. Mater. 201 (2019) 871–878. https://doi.org/10.1016/j.conbuildmat.2018.12.041. AlizadehV. New approach for proportioning of controlled low strength materials Constr. Build. Mater. 201 2019 871 878 https://doi.org/10.1016/j.conbuildmat.2018.12.041. 10.1016/j.conbuildmat.2018.12.041 Search in Google Scholar

T. Manh Do, G.O. Kang, Y. sang Kim, Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products, Constr. Build. Mater. 206 (2019) 576–589. https://doi.org/10.1016/j.conbuildmat.2019.02.088. Manh DoT. KangG.O. sang KimY. Development of a new cementless binder for controlled low strength material (CLSM) using entirely by-products Constr. Build. Mater. 206 2019 576 589 https://doi.org/10.1016/j.conbuildmat.2019.02.088. 10.1016/j.conbuildmat.2019.02.088 Search in Google Scholar

S.K. Kaliyavaradhan, T.C. Ling, M.Z. Guo, K.H. Mo, Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties, J. Environ. Manage. 241 (2019) 383–396. https://doi.org/10.1016/j.jenvman.2019.03.017. KaliyavaradhanS.K. LingT.C. GuoM.Z. MoK.H. Waste resources recycling in controlled low-strength material (CLSM): A critical review on plastic properties J. Environ. Manage. 241 2019 383 396 https://doi.org/10.1016/j.jenvman.2019.03.017. 10.1016/j.jenvman.2019.03.01731028969 Search in Google Scholar

J.G. Jang, S.M. Park, S. Chung, J.W. Ahn, H.K. Kim, Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator, Constr. Build. Mater. 159 (2018) 642–651. https://doi.org/10.1016/j.conbuildmat.2017.08.158. JangJ.G. ParkS.M. ChungS. AhnJ.W. KimH.K. Utilization of circulating fluidized bed combustion ash in producing controlled low-strength materials with cement or sodium carbonate as activator Constr. Build. Mater. 159 2018 642 651 https://doi.org/10.1016/j.conbuildmat.2017.08.158. 10.1016/j.conbuildmat.2017.08.158 Search in Google Scholar

S.M. Park, N.K. Lee, H.K. Lee, Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation, Constr. Build. Mater. 156 (2017) 728–738. https://doi.org/10.1016/j.conbuildmat.2017.09.001. ParkS.M. LeeN.K. LeeH.K. Circulating fluidized bed combustion ash as controlled low-strength material (CLSM) by alkaline activation Constr. Build. Mater. 156 2017 728 738 https://doi.org/10.1016/j.conbuildmat.2017.09.001. 10.1016/j.conbuildmat.2017.09.001 Search in Google Scholar

C.L. Hwang, C.H. Chiang, T.P. Huynh, D.H. Vo, B.J. Jhang, S.H. Ngo, Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag, Constr. Build. Mater. 135 (2017) 459–471. https://doi.org/10.1016/j.conbuildmat.2017.01.014. HwangC.L. ChiangC.H. HuynhT.P. VoD.H. JhangB.J. NgoS.H. Properties of alkali-activated controlled low-strength material produced with waste water treatment sludge, fly ash, and slag Constr. Build. Mater. 135 2017 459 471 https://doi.org/10.1016/j.conbuildmat.2017.01.014. 10.1016/j.conbuildmat.2017.01.014 Search in Google Scholar

T.R. Naik, R.N. Kraus, R. Siddique, Controlled Low-Strength Materials Containing Mixtures of Coal Ash and New Pozzolanic Material, ACI Mater. J. 100 (2003) 208–215, https://doi.org/10.14359/12621. NaikT.R. KrausR.N. SiddiqueR. Controlled Low-Strength Materials Containing Mixtures of Coal Ash and New Pozzolanic Material ACI Mater. J. 100 2003 208 215 https://doi.org/10.14359/12621. 10.14359/12621 Search in Google Scholar

N. K. Lee, H. K. Kim, I. S. Park, H. K. Lee, Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products, Constr. Build. Mater. 49 (2013) 738–746, https://doi.org/10.1016/j.conbuildmat.2013.09.002. LeeN. K. KimH. K. ParkI. S. LeeH. K. Alkali-activated, cementless, controlled low-strength materials (CLSM) utilizing industrial by-products Constr. Build. Mater. 49 2013 738 746 https://doi.org/10.1016/j.conbuildmat.2013.09.002. 10.1016/j.conbuildmat.2013.09.002 Search in Google Scholar

V. Alizadeh, S. Helwany, A. Ghorbanpoor, K. Sobolev, Design and application of controlled low strength materials as a structural fill, Constr. Build. Mater. 53 (2014) 425–431, https://doi.org/10.1016/j.conbuildmat.2013.12.006. AlizadehV. HelwanyS. GhorbanpoorA. SobolevK. Design and application of controlled low strength materials as a structural fill Constr. Build. Mater. 53 2014 425 431 https://doi.org/10.1016/j.conbuildmat.2013.12.006. 10.1016/j.conbuildmat.2013.12.006 Search in Google Scholar

R. Siddique, Utilization of waste materials and byproducts in producing controlled low-strength materials, Resour. Conserv. Recycl. 54 (2009) 1–8, https://doi.org/10.1016/j.resconrec.2009.06.001. SiddiqueR. Utilization of waste materials and byproducts in producing controlled low-strength materials Resour. Conserv. Recycl. 54 2009 1 8 https://doi.org/10.1016/j.resconrec.2009.06.001. 10.1016/j.resconrec.2009.06.001 Search in Google Scholar

M. Etxeberria, J. Ainchil, M.E. Pérez, A. González, Use of recycled fine aggregates for Control Low Strength Materials (CLSMs) production, Constr. Build. Mater. 44 (2013) 142–148, https://doi.org/10.1016/j.conbuildmat.2013.02.059. EtxeberriaM. AinchilJ. PérezM.E. GonzálezA. Use of recycled fine aggregates for Control Low Strength Materials (CLSMs) production Constr. Build. Mater. 44 2013 142 148 https://doi.org/10.1016/j.conbuildmat.2013.02.059. 10.1016/j.conbuildmat.2013.02.059 Search in Google Scholar

M. C. Nataraja, Y. Nalanda, Performance of industrial by-products in controlled low-strength materials (CLSM), Waste Manag. 28 (2008) 1168–1181, https://doi.org/10.1016/j.wasman.2007.03.030. NatarajaM. C. NalandaY. Performance of industrial by-products in controlled low-strength materials (CLSM) Waste Manag. 28 2008 1168 1181 https://doi.org/10.1016/j.wasman.2007.03.030. 10.1016/j.wasman.2007.03.03017582753 Search in Google Scholar

V. Alizadeh, Analytical study for allowable bearing pressures of CLSM bridge abutments, Transp. Geotech. 21 (2019) 100271, https://doi.org/10.1016/j.trgeo.2019.100271. AlizadehV. Analytical study for allowable bearing pressures of CLSM bridge abutments Transp. Geotech. 21 2019 100271 https://doi.org/10.1016/j.trgeo.2019.100271. 10.1016/j.trgeo.2019.100271 Search in Google Scholar

T.M. Do, G.O. Kang, Y.S. Kim, Thermal conductivity of controlled low strength material (CLSM) under various degrees of saturation using a modified pressure plate extractor apparatus – a case study for geothermal systems, Appl. Therm. Eng. 143 (2018) 607–613, https://doi.org/10.1016/j.applthermaleng.2018.07.116. DoT.M. KangG.O. KimY.S. Thermal conductivity of controlled low strength material (CLSM) under various degrees of saturation using a modified pressure plate extractor apparatus – a case study for geothermal systems Appl. Therm. Eng. 143 2018 607 613 https://doi.org/10.1016/j.applthermaleng.2018.07.116. 10.1016/j.applthermaleng.2018.07.116 Search in Google Scholar

T.M. Do, A.N. Do, G.O. Kang, Y.S. Kim, Utilization of marine dredged soil in controlled low-strength material used as a thermal grout in geothermal systems, Constr. Build. Mater. 215 (2019) 613–622, https://doi.org/10.1016/j.conbuildmat.2019.04.255. DoT.M. DoA.N. KangG.O. KimY.S. Utilization of marine dredged soil in controlled low-strength material used as a thermal grout in geothermal systems Constr. Build. Mater. 215 2019 613 622 https://doi.org/10.1016/j.conbuildmat.2019.04.255. 10.1016/j.conbuildmat.2019.04.255 Search in Google Scholar

E. Miren, A. Javier, P.M. Eugenia, G. Alain, Use of recycled fine aggregates for control low strength materials (CLSMs) production, Constr. Build. Mater., 44 (2013), pp. 142–148. MirenE. JavierA. EugeniaP.M. AlainG. Use of recycled fine aggregates for control low strength materials (CLSMs) production Constr. Build. Mater. 44 2013 142 148 10.1016/j.conbuildmat.2013.02.059 Search in Google Scholar

Development of a Recommended Practice for Use of Controlled Low-Strength Material in Highway Construction, Dev. a Recomm. Pract. Use Control. Low-Strength Mater. Highw. Constr. (2008), https://doi.org/10.17226/13900. Development of a Recommended Practice for Use of Controlled Low-Strength Material in Highway Construction Dev. a Recomm. Pract. Use Control. Low-Strength Mater. Highw. Constr. 2008 https://doi.org/10.17226/13900. 10.17226/13900 Search in Google Scholar

T.C. Ling, S.K. Kaliyavaradhan, C.S. Poon, Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - an overview, Constr. Build. Mater., 158 (2018), 535–548, https://doi.org/10.1016/j.conbuildmat.2017.10.050. LingT.C. KaliyavaradhanS.K. PoonC.S. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling - an overview Constr. Build. Mater. 158 2018 535 548 https://doi.org/10.1016/j.conbuildmat.2017.10.050. 10.1016/j.conbuildmat.2017.10.050 Search in Google Scholar

M. Lachemi, M. Şahmaran, K. M. A. Hossain, A. Lotfy, M. Shehata, Properties of controlled low-strength materials incorporating cement kiln dust and slag, Cem. Concr. Compos. 32 (2010) 623–629, https://doi.org/10.1016/j.cemconcomp.2010.07.011. LachemiM. ŞahmaranM. HossainK. M. A. LotfyM. Shehata, Properties of controlled low-strength materials incorporating cement kiln dust and slag Cem. Concr. Compos. 32 2010 623 629 https://doi.org/10.1016/j.cemconcomp.2010.07.011. 10.1016/j.cemconcomp.2010.07.011 Search in Google Scholar

Shulin Li, The Research on Quantitative Evaluation of Circular Economy Based on Waste Input-Output Analysis, Procedia Environ. Sci. 12 (2012) 65–71, https://doi.org/10.1016/j.proenv.2012.01.248. LiShulin The Research on Quantitative Evaluation of Circular Economy Based on Waste Input-Output Analysis Procedia Environ. Sci. 12 2012 65 71 https://doi.org/10.1016/j.proenv.2012.01.248. 10.1016/j.proenv.2012.01.248 Search in Google Scholar

G. Sheng, J. Zhai, Q. Li, F. Li, Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement, Fuel. 86 (2007) 2625–2631, https://doi.org/10.1016/j.fuel.2007.02.018. ShengG. ZhaiJ. LiQ. LiF. Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement Fuel. 86 2007 2625 2631 https://doi.org/10.1016/j.fuel.2007.02.018. 10.1016/j.fuel.2007.02.018 Search in Google Scholar

R. Conn, K. Sellakumar, A. Bland, Utilization of CFB fly ash for construction applications, Proc. 15th Int. Conf. Fluid. Bed Combust. (1999). ConnR. SellakumarK. BlandA. Utilization of CFB fly ash for construction applications Proc. 15th Int. Conf. Fluid. Bed Combust. 1999 Search in Google Scholar

Formosa Petrochemical Corp, Promotional Report of Reuse Technology and Applications of By-Product Gypsum Mixed with Fly Ash; Annu. Rep. (2005). Formosa Petrochemical Corp Promotional Report of Reuse Technology and Applications of By-Product Gypsum Mixed with Fly Ash Annu. Rep. 2005 Search in Google Scholar

H.D. Weng, Circulating fluidized bed boiler technology. Chem. Technol. 6 (1998) 180–193. WengH.D. Circulating fluidized bed boiler technology Chem. Technol 6 1998 180 193 Search in Google Scholar

N.M. Jackson, R. Mack, S. Schultz, M. Malek, Pavement Subgrade Stabilization and Construction Using Bed and Fly Ash, Proc. Word Coal Ash. (2007) 1–12. JacksonN.M. MackR. SchultzS. MalekM. Pavement Subgrade Stabilization and Construction Using Bed and Fly Ash Proc. Word Coal Ash. 2007 1 12 Search in Google Scholar

C.. Lin, G.; Wu, Study on comprehensive utilization of high-sulphidation ash from CFB boiler. Environ, Sci. Technol. 26 (2003) 62–63. LinC. WuG. Study on comprehensive utilization of high-sulphidation ash from CFB boiler Environ, Sci. Technol. 26 2003 62 63 Search in Google Scholar

Han, X.; Li, Q.; Niu, M.; Huang, Y.; Jiang, X, Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 1. system and key issues, Oil Shale 31 (2014) 42–53. HanX. LiQ. NiuM. HuangY. JiangX Combined fluidized bed retorting and circulating fluidized bed combustion system of oil shale: 1. system and key issues Oil Shale 31 2014 42 53 10.3176/oil.2014.1.05 Search in Google Scholar

Weilong Song, Zhiduo Zhu, Shaoyun Pu, Yu Wan, Wangwen Huo, Shigong Song, Jun Zhang, Kai Yao, Lele Hu, efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends, Construction and Building Materials, 259(2020), 1–13, https://doi.org/10.1016/j.conbuildmat.2020.119814. SongWeilong ZhuZhiduo PuShaoyun WanYu HuoWangwen SongShigong ZhangJun YaoKai HuLele efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends Construction and Building Materials 259 2020 1 13 https://doi.org/10.1016/j.conbuildmat.2020.119814. 10.1016/j.conbuildmat.2020.119814 Search in Google Scholar

Suman Saha, C. Rajasekaran, Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag, Construction and Building Materials, 146 (2017), 615–620, http://dx.doi.org/10.1016/j.conbuildmat.2017.04.139 SahaSuman RajasekaranC. Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag Construction and Building Materials, 146 2017 615 620 http://dx.doi.org/10.1016/j.conbuildmat.2017.04.139 10.1016/j.conbuildmat.2017.04.139 Search in Google Scholar

Xiaobin Wei, Dongqing Li, Feng Ming, Chengsong Yang, Lei Chen, Yuhang Liu, Influence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortar, Cement and Concrete Composites, 269(2021), 1–14, https://doi.org/10.1016/j.conbuildmat.2020.121811 WeiXiaobin LiDongqing MingFeng YangChengsong ChenLei LiuYuhang Influence of low-temperature curing on the mechanical strength, hydration process, and microstructure of alkali-activated fly ash and ground granulated blast furnace slag mortar Cement and Concrete Composites 269 2021 1 14 https://doi.org/10.1016/j.conbuildmat.2020.121811 10.1016/j.conbuildmat.2020.121811 Search in Google Scholar

B.W. Ramme, C.F. Scholer, ACI 229R-99 Controlled Low-Strength Materials Reported by ACI Committee 229, Concrete. (n.d.), 1–15. RammeB.W. ScholerC.F. ACI 229R-99 Controlled Low-Strength Materials Reported by ACI Committee 229, Concrete (n.d.), 1 15 Search in Google Scholar

A. Katz, K. Kovler, Utilization of industrial by-products for the production of controlled low strength (CLSM), Waste Manag. 24 (2004), 501–512, https://doi.org/10.1016/S0956-053X(03)00134-X. KatzA. KovlerK. Utilization of industrial by-products for the production of controlled low strength (CLSM) Waste Manag. 24 2004 501 512 https://doi.org/10.1016/S0956-053X(03)00134-X. 10.1016/S0956-053X(03)00134-X Search in Google Scholar

C.S. Shon, A.K. Mukhopadhyay, D. Saylak, D.G. Zollinger, G.G. Mejeoumov, Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture, Constr. Build. Mater. 24 (2010), 839–847, https://doi.org/10.1016/j.conbuildmat.2009.10.022. ShonC.S. MukhopadhyayA.K. SaylakD. ZollingerD.G. MejeoumovG.G. Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture Constr. Build. Mater. 24 2010 839 847 https://doi.org/10.1016/j.conbuildmat.2009.10.022. 10.1016/j.conbuildmat.2009.10.022 Search in Google Scholar

ASTM, Standard Specification for Slag Cement for Use in Concrete and Mortars, ASTM Stand. 44 (2013) 1–8, https://doi.org/10.1520/C0989. ASTM Standard Specification for Slag Cement for Use in Concrete and Mortars ASTM Stand. 44 2013 1 8 https://doi.org/10.1520/C0989. 10.1520/C0989 Search in Google Scholar

ACI Committee 229, Report on Controlled Low-Strength Materials, (2013) 22. ACI Committee 229 Report on Controlled Low-Strength Materials 2013 22 Search in Google Scholar

ACI 237R, Self-Consolidating Concrete, American Concrete Institute, (2007). ACI 237R Self-Consolidating Concrete American Concrete Institute 2007 Search in Google Scholar

ASTM C 311-04, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete., Annu. B. ASTM Stand. 04.02 (2005), 204–212. ASTM C 311-04 Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. Annu. B. ASTM Stand. 04.02 2005 204 212 Search in Google Scholar

K. Chen, W.T. Lin, W. Liu. Microstructures and mechanical properties of sodium-silicate-activated slag/cofired fly ash cementless composites, J. Clean. Prod. 277 (2020) Article 124025, https://doi.org/10.1016/j.jclepro.2020.124025. ChenK. LinW.T. LiuW. Microstructures and mechanical properties of sodium-silicate-activated slag/cofired fly ash cementless composites J. Clean. Prod. 277 2020 Article 124025, https://doi.org/10.1016/j.jclepro.2020.124025. 10.1016/j.jclepro.2020.124025 Search in Google Scholar

eISSN:
2083-134X
Langue:
Anglais