1. bookVolume 38 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Dynamic failure mechanism of copper foil in laser dynamic flexible forming

Published Online: 13 Apr 2021
Volume & Issue: Volume 38 (2020) - Issue 4 (December 2020)
Page range: 684 - 692
Received: 19 Aug 2020
Accepted: 14 Jan 2021
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Laser dynamic flexible forming (LDFF) is a novel high velocity forming (HVF) technology, in which the foil metal is loaded by laser shock wave. Strain localization is readily to occur around the bulge edge, which will result in the ultimate dynamic failure. In this work, the microstructures before and after dynamic fracture are characterized by transmission electron microscopy (TEM) to investigate the dynamic failure mechanism. The plastic deformation regions of copper foil are composed of shock compression, strain localization and bulge. Microstructure refinement was observed in three different plastic deformation regions, particularly, dynamic recrystallization (DRX) occurs in the strain localization and bulge regions. In bulge region, extremely thin secondary twins in the twin/matrix (T/M) lamellae are formed. The microstructure features in the strain localization region show that superplastic flow of material exists until fracture, which may be due to DRX and subsequent grain boundary sliding (GBS) of the recrystallized grains. The grain coarsening in strain localization region may degrade the material flowing ability which results in the dynamic fracture.

Keywords

[1] Daehn G.S., High-velocity metal forming: ASM International, Materials Park, Ohio, 2006.10.31399/asm.hb.v14b.a0005127 Search in Google Scholar

[2] Zhang Y., Babu S. S., Prothe C., Blakely M., Kwasegroch J., Laha M., J. Mater. Process. Technol., 211 (2011), 944.10.1016/j.jmatprotec.2010.01.001 Search in Google Scholar

[3] Khardin M., Harhash M., Chernikov D., Glushchenkov V., Palkowski H., Compos. Struct., 252 (2020), 112729.10.1016/j.compstruct.2020.112729 Search in Google Scholar

[4] Iyama H., Higa Y., Nishi M., Itoh S., Int. J. Mult., 11 (2017), 233. Search in Google Scholar

[5] Li J., Gao H., Cheng G.J., J. Manuf. Sci. Eng.-Trans., ASME 132 (2010), 061005. Search in Google Scholar

[6] Barati Darband G., Aliofkhazraei M., Khorsand S., Sokhanvar S., Kaboli A., Arab. J. Chem., 13 (2020), 1763.10.1016/j.arabjc.2018.01.013 Search in Google Scholar

[7] Li J., Chung T.F., Chen Y.P., Cheng G.J., Nano Lett., 12 (2012), 4577.10.1021/nl301817t22876850 Search in Google Scholar

[8] Xiong F., Yang H., Liu K., Man J., Chen H., Opt. Laser Technol., 120 (2019), 105762.10.1016/j.optlastec.2019.105762 Search in Google Scholar

[9] Jin S., Wang Y., Motlag M., Gao S., Xu J., Nian Q., Wu W., Cheng G.J., Adv. Mater., 30 (2018).10.1002/adma.20170584029356129 Search in Google Scholar

[10] Choi D.C., Kim H.S., Opt. Lasers Eng., 124 (2020), 105799.10.1016/j.optlaseng.2019.105799 Search in Google Scholar

[11] Jin S., Zhou Z., Sakr E.S.A., Motlag M., Huang X., Tong L., Bermel P., Ye L., Cheng G.J., Small, 15 (2019), e1900481.10.1002/smll.20190048130957941 Search in Google Scholar

[12] Man J., Yang H., Wang Y., Chen H., Xiong F., Opt. Laser Technol., 119 (2019), 105669.10.1016/j.optlastec.2019.105669 Search in Google Scholar

[13] Shen Z., Wang X., Liu H., Wang Y., Wang C., Appl. Surf. Sci., 327 (2015), 307.10.1016/j.apsusc.2014.11.172 Search in Google Scholar

[14] Wang X., Du D., Zhang H., Shen Z., Liu H., Zhou J., Int. J. Mach. Tools Manuf., 67 (2013), 8.10.1016/j.ijmachtools.2012.12.003 Search in Google Scholar

[15] Nagarajan B., Castagne S., Wang Z., Zheng H. Y., Nadarajan K., Int. J. Mater. Form., 10 (2017), 109.10.1007/s12289-015-1264-5 Search in Google Scholar

[16] Yu C., Gao H., Yu H., Jiang H., Cheng G.J., Appl. Phys. Lett., 95 (2009), 091108.10.1063/1.3222863 Search in Google Scholar

[17] Shen Z., Zhang J., Liu H., Wang X., Ma Y., Int. J. Mach. Tools Manuf., 141 (2019), 1.10.1016/j.ijmachtools.2019.03.004 Search in Google Scholar

[18] Balanethiram V.S., Daehn G.S., Scr. Mater., 30 (1994), 515.10.1016/0956-716X(94)90613-0 Search in Google Scholar

[19] Jenab A., Green D.E., Alpas A.T., Golovashchenko S.F., J. Mater. Process. Technol., 255 (2018), 914.10.1016/j.jmatprotec.2017.12.037 Search in Google Scholar

[20] Psyk V., Risch D., Kinsey B.L., Tekkaya A.E., Kleiner M., J. Mater. Process. Technol., 211 (2011), 787.10.1016/j.jmatprotec.2010.12.012 Search in Google Scholar

[21] Mynors D.J., Zhang B., J. Mater. Process. Technol., 125 (2002), 1.10.1016/S0924-0136(02)00413-2 Search in Google Scholar

[22] Murr L.E., Pizaña C., Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 38 (2007), 2611.10.1007/s11661-007-9185-7 Search in Google Scholar

[23] Cheng G.J., Pirzada D., Ming Z., J. Appl. Phys., 101 (2007), 063108.10.1063/1.2710334 Search in Google Scholar

[24] Liu H.X., Hu Y., Wang X., Shen Z.B., Li P., Gu C.X., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 564 (2013), 13. Search in Google Scholar

[25] Nagarajan B., Castagne S., Wang Z., Zheng H. Y., Appl. Phys. A-Mater. Sci. Process., 121 (2015), 695.10.1007/s00339-015-9460-1 Search in Google Scholar

[26] Shen Z., Liu H., Wang X., Wang C., Appl. Surf. Sci., 369 (2016), 288.10.1016/j.apsusc.2016.02.063 Search in Google Scholar

[27] Shen Z., Zhang J., Li P., Liu H., Yan Z., Ma Y., J. Manuf. Process., 37 (2019), 82.10.1016/j.jmapro.2018.11.015 Search in Google Scholar

[28] Wang K., Tao N.R., Liu G., Lu J., Lu K., Acta Mater., 54 (2006), 5281.10.1016/j.actamat.2006.07.013 Search in Google Scholar

[29] Li Y. S., Tao N. R., Lu K., Acta Mater., 56 (2008), 230.10.1016/j.actamat.2007.09.020 Search in Google Scholar

[30] Sun H.Q., Shi Y.N., Zhang M.X., Lu K., Acta Mater., 55 (2007), 975.10.1016/j.actamat.2006.09.018 Search in Google Scholar

[31] Rittel D., Landau P., Venkert A., Phys. Rev. Lett., 101 (2008), 165501.10.1103/PhysRevLett.101.16550118999683 Search in Google Scholar

[32] Esquivel E.V., Murr L.E., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 409 (2005), 13. Search in Google Scholar

[33] Mishra A., Kad B., Gregori F., Meyers M., Acta Mater., 55 (2007), 13.10.1016/j.actamat.2006.07.008 Search in Google Scholar

[34] Cao F., Li Z., Zhang N., Ding H., Yu F., Zuo L., Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 571 (2013), 167.10.1016/j.msea.2013.02.010 Search in Google Scholar

[35] Tao N.R., Lu K., Scr. Mater., 60 (2009), 1039.10.1016/j.scriptamat.2009.02.008 Search in Google Scholar

[36] Taylor G.I., Quinney H., Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., A413 (1934), 307. Search in Google Scholar

[37] Rittel D., Wang Z.G., Merzer M., Phys. Rev. Lett., 96 (2006), 075502.10.1103/PhysRevLett.96.07550216606104 Search in Google Scholar

[38] Zener C., Hollomon J. H., J. Appl. Phys., 15 (1944), 22.10.1063/1.1707363 Search in Google Scholar

[39] Xu Y., Zhang J., Bai Y., Meyers M.A., Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 39 (2008), 811.10.1007/s11661-007-9431-z Search in Google Scholar

[40] Rittel D., 9th International Conference on Mechanical and Physical Behaviour of Materials under Dynamic Loading, 2009, p. 955. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo