1. bookVolume 38 (2020): Issue 4 (December 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Hybrid white light emitting devices (HWLEDs) from organic polymer and PbS nanocrystals by multiple excitons

Published Online: 13 Apr 2021
Volume & Issue: Volume 38 (2020) - Issue 4 (December 2020)
Page range: 693 - 698
Received: 27 Aug 2020
Accepted: 03 Nov 2020
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Hybrid white light-emitting devices (HWLEDs) were fabricated using FTO/PEDOT: PSS/PbS/Alq3/Ni system and synthesized by phase separation process. In the present study, the multiple excitons generation in lead sulfide (PbS) NCs, which is characteristic of PbS NCs, was used to induce an effective and regulated energy transfer to an HWLED. The HWLED consisted of three layers successively deposited on FTO glass substrate; the first layer consisted of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) blended with polymethyl methacrylate (PMMA) organic polymer in the 1:1 ratio, while the second layer consisted of PbS NCs. Finally, above the layer of the PbS NCs, Tris (8-hydroxyquinoline) aluminum (Alq3) layer was deposited. The white light was generated with quite a good efficiency due to the confinement effect that makes the energy gap greater. The characteristics of the current-voltage (I-V) indicate acceptable conditions for the generation of white light by multiple excitons. It was found that the emission levels able to produce white luminescence, classified based on the coordinate system of chromaticity (CIE 1931), are x = 0.31, y = 0.33 while the correlated color temperature (CCT) is about 6250 K. The HWLEDs made from PbS NCs with hole injection from the organic polymer (PEDOT: PSS with PMMA), and electron injection from organic molecules (Alq3) are capable of white light generation.

Keywords

[1] Yanqin M., Xiaozhen W., Long G., Kexiang W., Bo Z., Zhongqiang W., Bin Z., Hua W., Yucheng W., Bingshe X., Nanophotonics, 8 (2019), 1783. Search in Google Scholar

[2] Ekaterina N., Julia F., Sandra G., Adv. Funct. Mater., (2020), 1. Search in Google Scholar

[3] Akeel M. K., NHC, 29 (2020), 2297. Search in Google Scholar

[4] Daekyung K., Mareddi B. K., Changhee S., Hongsik P., Jonghoo P., Appl. Sci., 9 (2019), 1. Search in Google Scholar

[5] Ashour M., Mohamed R., Mohamed S., RSC Adv., 10, (2020), 14458.10.1039/C9RA11042A Search in Google Scholar

[6] Vanessa W., Vladimir B., Nano Rev., 1 (2010), 5202.10.3402/nano.v1i0.5202321521922110863 Search in Google Scholar

[7] Philippe B., Ziqi L., Mark W., J. Phys. Chem. Lett., 10 (2019), 5897.10.1021/acs.jpclett.9b0184131536364 Search in Google Scholar

[8] Akeel M.K., JMNM, 29 (2017), 2297. Search in Google Scholar

[9] Xiao P., Huang J., Yicong Y., Baiquan L., Molecules, 24 (2019), 1.10.3390/molecules24010151633730330609748 Search in Google Scholar

[10] Tzu-Ming L., Joao C., Tomasz L., Artur B., Chih-Chia H., NPG Asia Mater., 8 (2016), 295. Search in Google Scholar

[11] Do Y., Tzung-Han L., Jae W., Jesse R., Franky S., Sci. Rep., 4 (2015), 1. Search in Google Scholar

[12] Yue M., YU Z., William W., J. Mater. Chem. C, 7 (2019), 13662.10.1039/C9TC04065J Search in Google Scholar

[13] Xiulei S., Song C., Meng-Yao L., Biao H., Guozhen Z., Ran C., Mingxi Z., Nano Res., 13 (2020), 2239. Search in Google Scholar

[14] Kroupa D.M., Pach G.F., Vörös M., Giberti F., Chernomordik B.D., Crisp R.W., Nozik A.J., Johnson J.C., Singh R., Klimov V.I., Galli G., Beard M.C., ACS Nano, 12 (2018), 10084.10.1021/acsnano.8b0485030216045 Search in Google Scholar

[15] Smith C., Binks D., Nanomaterials, 4 (2014), 19.10.3390/nano4010019530460928348283 Search in Google Scholar

[16] Kershaw S.V., Rogach A.L., Materials, 10 (9) (2017), 1095.10.3390/ma10091095561574928927007 Search in Google Scholar

[17] So-Yeon P., Younghoon K., Sohee J., Dong H., Gill S., Hyun S., Chem. Phys. Chem., 20 (2019), 2657. Search in Google Scholar

[18] Chen Q., Marco de N., Yang Y., Song T., Chen C., Zhao H., Hong Z., Zhou H., Yang Y., Nano Today, 10 (2015), 355.10.1016/j.nantod.2015.04.009 Search in Google Scholar

[19] Zhang F., Lu H., Tong J., Berry J. J., Beard M. C., Zhu K., Energy Environ. Sci., 13 (2020), 1154.10.1039/C9EE03757H Search in Google Scholar

[20] Wu J., Chen S., ACS Appl. Mater. Interfaces, 10 (2018), 4851.10.1021/acsami.7b1469529285939 Search in Google Scholar

[21] Xu J., Miao Y., Zheng J., Wang H., Yang Y., Liu X., Nanoscale, 10 (2018), 11211.10.1039/C8NR01834K29873657 Search in Google Scholar

[22] Shi H., Deng L., Chen S., Xu Y., Zhao X., Cheng F., Huang W., AIP Adv., 4 (2014), 047110.10.1063/1.4871405 Search in Google Scholar

[23] Nishihara T., Tahara H., Okano M., Ono M., Kanemitsu Y., J. Phys. Chem. Lett., 8 (2015), 1327.10.1021/acs.jpclett.5b0029326263131 Search in Google Scholar

[24] Yang Y., Rodriguez-Cordoba W., Lian T., Nano Lett., 12 (2012), 4235.10.1021/nl301847r22757981 Search in Google Scholar

[25] Cunningham P.D., Boercker J.E., Foos E E., Lumb M.P., Smith A.R., Tischler J.G., Melinger J.S., Nano Lett., 11 (2011), 3476.10.1021/nl202014a21766838 Search in Google Scholar

[26] Cunningham P.D., Boercker J.E., Foos E E., Lumb M.P., Smith A.R., Tischler J.G., Melinger J.S., Sci. Rep., 5 (2015), 1. Search in Google Scholar

[27] Cao W., Zhang Z., Patterson R., Lin Y., Wen X., Veetil B.P., Zhang P., Zhang Q., Shrestha S., Conibeer G., Huang S., RSC Adv., 6 (2016), 90846.10.1039/C6RA20165B Search in Google Scholar

[28] Arthur D., Color Res. Appl., 29 (2004), 267.10.1002/col.20020 Search in Google Scholar

[29] Li C., Melgosa C., Ruan X., Zhang Y., Ma L., Xiao K. Luo M.R., Opt. Soc. Am., 24 (2016), 13.10.1364/OE.24.01406627410567 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo