1. bookVolume 38 (2020): Issue 3 (September 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Semi-organic nonlinear optical material: (((4-sulfonatophenyl)ammonio)oxy)zirconium for dielectric and photonics applications

Published Online: 12 Dec 2020
Volume & Issue: Volume 38 (2020) - Issue 3 (September 2020)
Page range: 434 - 442
Received: 10 Jun 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

This article discusses the growth and characterization of (((4-sulfonatophenyl) ammonio)oxy) zirconium (SAOZ) single crystals. Sulphanilic acid incorporated zirconium oxychloride semi-organic single crystals have been synthesized by slow evaporation technique. From the X-ray studies, lattice parameters a = 7.31 Å, b = 7.51 Å, c = 13.92 Å, volume = 765 Å3 have been found and so the crystal has been identified as orthorhombic with non-centrosymmetric space group P212121. The powder XRD examination demonstrated the quality and high crystalline nature of the grown crystal. The presence of functional groups was confirmed by FT-IR technique. The chemical structure of the compound was established by 1H and 13C NMR spectra. The optical transmittance window and the low cutoff wavelength of SAOZ have been identified by UV-Vis-NIR studies. Photoluminescence studies showed a wide blue light emission. TG and DTA examinations were carried out to characterize the thermal behavior of the grown crystal. The mechanical strength of the grown crystal was analyzed by the Vickers microhardness test. The elemental analysis was done by EDAX. The dielectric response of the crystals was analyzed in the frequency range of 50 Hz to 5 MHz at various temperatures and the outcomes were discussed. The SHG efficiency was estimated in correlation with KDP by employing powder Kurtz method.

Keywords

[1] Luo H., Pan J., Lar B., Li Y., Li X., Han L., Inorg. Chem. Commun., 27 (2013), 79.10.1016/j.inoche.2012.10.023Search in Google Scholar

[2] Wu Q., Li Y., Chen H., Jiang K., Li H., Zhong C., Chen X., Qin J., Inorg. Chem. Commun., 34 (2013), 1.10.1016/j.inoche.2013.04.034Search in Google Scholar

[3] Caroline L.M., Sankar R., Indirani R.M., Vasudevan S., Mater. Chem. Phys., 114 (2009), 490.10.1016/j.matchemphys.2008.09.070Search in Google Scholar

[4] Jiang M.-H., Fang Q., Adv. Mater., 11 (1999), 1147.10.1002/(SICI)1521-4095(199909)11:13<1147::AID-ADMA1147>3.0.CO;2-HSearch in Google Scholar

[5] Hanumantharao R., Kalainathan S., Spectrochim. Acta A, 86 (2012), 80.10.1016/j.saa.2011.10.006Search in Google Scholar

[6] Roskar M.J., Cunningham P., Ewbank M.D., Marcy H.O., Vachss F.R., Warren L.F., Gappinger R., Borwick R., Pure Appl. Opt., 5 (1996), 667.10.1088/0963-9659/5/5/020Search in Google Scholar

[7] Long N.J., Angew. Chem. Int. Ed., 34 (1995), 21.Search in Google Scholar

[8] Zyss J., Molecular nonlinear optics: materials, physics and devices, Academic Press, Boston, 1994.Search in Google Scholar

[9] Marder S.R., Sohn J.E., in: Struck (Ed.), Materials for Nonlinear Optics, Academic Press, New York, 1991.10.1021/bk-1991-0455Search in Google Scholar

[10] Dhanalakshmi B., Ponnusamy S., Muthamizhchelvan C., Subhashini V., J. Cryst. Growth, 426 (2015), 103.10.1016/j.jcrysgro.2015.05.027Search in Google Scholar

[11] Subhashini V., Ponnusamy S., Muthamizhchelvan C., Spectrochim. Acta Part A, 87 (2012), 265.10.1016/j.saa.2011.11.050Search in Google Scholar

[12] Subhashini V., Ponnusamy S., Muthamizhchelvan C., J. Cryst. Growth, 363 (2013), 211.10.1016/j.jcrysgro.2012.10.045Search in Google Scholar

[13] Boopathi K., Rajesh P., Ramasamy P., Mater. Res. Bull., 479 (2012), 2299.10.1016/j.materresbull.2012.05.041Search in Google Scholar

[14] Vetrivel S., Anandan P., Kanagasabapathy K., Bhattacharya S., Gopinath S., Rajasekaran R., Spectrochim. Acta Part A, 110 (2013), 317.10.1016/j.saa.2013.03.074Search in Google Scholar

[15] Boopathi K., Ramasamy P., Bhagavannarayana G., J. Cryst. Growth, (2014), 32.10.1016/j.jcrysgro.2013.09.028Search in Google Scholar

[16] Boopathi K., Rajesh P., Ramasamy P., J. Cryst. Growth, 345 (2012), 1.10.1016/j.jcrysgro.2012.01.036Search in Google Scholar

[17] Chemla D.S., Zyss J., Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, 1987.Search in Google Scholar

[18] Newman P.R., Warren L.F., Cunningham P., Chang T.Y Cooper., D.E., Burdge G.L., Mater. Res. Soc. Proc., 173 (1990), 557.10.1557/PROC-173-557Search in Google Scholar

[19] Badan J., Hierle R., Perigaud A., Zyss J., ACS Symp. Series, 233 (1983), 81.10.1021/bk-1983-0233.ch004Search in Google Scholar

[20] Garito A.F., Singer K.D., Opt. Technol., 18 (1982), 59.Search in Google Scholar

[21] Dastidar P., Row T.N.G., Prasad B.R., Subramania C.K., Chem. Soc. Perkin Trans., 2 (12) (1993), 2419.10.1039/P29930002419Search in Google Scholar

[22] Mythili P., Kanagasekaran T., Khan S.A., Kulriya P., Gopalakrishnana K., Nucl. Instrum. Phys. Res. B, 266 (2008), 1754.10.1016/j.nimb.2008.01.071Search in Google Scholar

[23] Vinoth E., Vetrivel S., Mullai U., Aruljothi R., Gnanamoorthy K., J. Adv. Phys., 7 (2018), 1.10.1166/jap.2018.1403Search in Google Scholar

[24] Caroline L.M., Mani G., Kumaresan S., Kumar M., Selvan T.S., Rapid Commun., 9 – 10 (2015), 1239.Search in Google Scholar

[25] Sangwal K., Mater. Chem. Phys., 63 (2) (2000), 145.10.1016/S0254-0584(99)00216-3Search in Google Scholar

[26] Onitsech E.M., Mikroskopie, 95 (1956), 12.10.1016/0001-6918(56)90010-5Search in Google Scholar

[27] Rao K., Surender V., Rani S., Bull Mater. Sci. B, (2002), 25.10.1007/BF02710530Search in Google Scholar

[28] Kurtz S.K., Perry T.T., J. Appl. Phys., 39 (1968), 3798.10.1063/1.1656857Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo