1. bookVolume 38 (2020): Issue 2 (June 2020)
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year
access type Open Access

Exploration of optoelectronic, nonlinear and charge transport properties of hydroquinoline derivatives by DFT approach

Published Online: 06 Oct 2020
Volume & Issue: Volume 38 (2020) - Issue 2 (June 2020)
Page range: 284 - 295
Received: 04 Nov 2017
Accepted: 23 Apr 2019
Journal Details
First Published
16 Apr 2011
Publication timeframe
4 times per year

Present investigation deals with an in depth study of three compounds including 4-(4-chlorophenyl)-8-methyl-2-oxo- 1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (1), 4-(4-bromophenyl)-8-methyl-2-oxo-1,2,3,4,4a,5,6,7-octahydroquinoline-3- carbonitrile (2) and 8-methyl-2-oxo-4-(thiophen-2-yl)-1,2,5,6,7,8-hexahydroquinoline-3-carbonitrile (3) with respect to their structural, electronic, optical and charge transport properties. The ground and excited states geometries were optimized by density functional theory (DFT) and time dependent DFT, respectively. To rationalize the adopted methodology, the calculated geometrical parameters at ground state were compared with the experimental crystal structures. Several quantum chemical insights including the analysis of frontier molecular orbitals (FMOs), total/partial density of states (T/PDOS), molecular electrostatic potentials (MEP), local and global reactivity descriptors revealed that the studied compounds would be efficient multifunctional materials. The absorption wavelengths as well as their major transitions were thoroughly studied at TD-B3LYP/6-31G** level of theory. The smaller hole reorganization energies indicate that all these compounds might show better hole transport tendency. The anionic geometry relaxation of compound 2 is larger than the cationic form which leads to higher electron reorganization energy revealing the reduction of electron charge transport as compared to the hole.


[1] Massarani E., Nardi D., Pozzi R., Degen L., Magistretti M.J., J. Med. Chem., 13 (1970), 380.10.1021/jm00295a0525412101Search in Google Scholar

[2] Segal I., Zablotskaya A., Lukevics E., Chem. Heterocycl. Compd., 41 (2005), 613.10.1007/s10593-005-0192-6Search in Google Scholar

[3] Abdel-Gawad S.M., El-Gaby M.S.A., Heiba H.I., Aly H.M., Ghorab M.M., J. Chin. Chem. Soc., 52 (2005), 1227.10.1002/jccs.200500177Search in Google Scholar

[4] Levine H., 3RD, Ding Q., Walker J.A., Voss R.S., Augelli-Szafran C.E., Neurosci. Lett., 465 (2009), 99.10.1016/j.neulet.2009.08.002275411819664688Search in Google Scholar

[5] Adhikari A., Kalluraya B., Sujith K.V., Gouthamchandra, Mahmood R., Saudi Pharmaceutical J., 20 (2012), 75.10.1016/j.jsps.2011.04.002374495723960779Search in Google Scholar

[6] Huiguo Lai G.S.P., Radhakrishnan Padmanabhan, Antiviral Res., 97 (2013), 74.10.1016/j.antiviral.2012.10.009356846123127365Search in Google Scholar

[7] Irfan A., Cui R., Zhang J., Chem. Phys., 358 (2009), 25.10.1016/j.chemphys.2008.12.013Search in Google Scholar

[8] Irfan A., Cui R., Zhang J., Nadeem M., Aust. J. Chem., 63 (2010), 1283.10.1071/CH09491Search in Google Scholar

[9] Prachayasittikul V P.S., Ruchirawat S, Prachayasittikul V, Drug Des. Dev. Ther., 7 (2013), 1157.10.2147/DDDT.S49763379359224115839Search in Google Scholar

[10] Chupakhina T.A., Katsev A.M., Kuryanov V.O., USS. J. Bioorg. Chem., 38 (2012), 422.10.1134/S106816201204005XSearch in Google Scholar

[11] Ben Khalifa M., Vaufrey D., Tardy J., Org. Electron., 5 (2004), 187.10.1016/j.orgel.2003.11.006Search in Google Scholar

[12] Lenzi O., Colotta V., Catarzi D., Varano F., Squarcialupi L., Filacchioni G., Varani K., Vincenzi F., Borea P.A., Ben D.D., Lambertucci C., Cristalli G., Biorg. Med. Chem., 19 (2011), 3757.10.1016/j.bmc.2011.05.00121616671Search in Google Scholar

[13] Shen A.-Y., Wu S.-N., Chiu C.-T., J. Pharm. Pharmacol., 51 (1999), 543.10.1211/002235799177282610411213Search in Google Scholar

[14] Bahgat K., Ragheb A.G., Central European J. Chem., 5 (2007), 201.Search in Google Scholar

[15] Teng Y.H.K., Su Z.M., Liao Y., Yang S.Y., Wang R.S., Theor. Chem. Acc., 117 (2007), 1.10.1007/s00214-005-0025-9Search in Google Scholar

[16] Rams-Baron M.D., Mrozek-Wilczkiewicz A., Korzec M., Cieslik W., Spaczyńska E., Bartczak P., Ratuszna A., Polanski J., Musiol R., PLoS One, 10 (2015), e0131210.10.1371/journal.pone.0131210448262526114446Search in Google Scholar

[17] Asiri A.M., Al-Youbi A.O., Faidallah H.M., Badahdah K.O., Ng S.W., Acta Crystallogr. Sect. E, 67 (2011), o2596.10.1107/S1600536811032843320081722064824Search in Google Scholar

[18] Asiri A.M., Faidallah H.M., Ng S.W., Tiekink E.R.T., Acta Crystallogr. Sect. E, 68 (2012), o2376.10.1107/S1600536812011701334409822606101Search in Google Scholar

[19] Asiri A.M., Faidallah H.M., Saqer A.A.A., Ng S.W., Tiekink E.R.T., Acta Crystallogr. Sect. E, 68 (2012), o2291.10.1107/S1600536812011701Search in Google Scholar

[20] Li Y., Zou L.-Y., Ren A.-M., Feng J.-K., Comp. Theor. Chem., 981 (2012), 14.10.1016/j.comptc.2011.11.021Search in Google Scholar

[21] Chaudhry A.R., Ahmed R., Irfan A., Muhammad S., Shaari A., Al-Sehemi A.G., Comp. Theor. Chem., 1045 (2014), 123.10.1016/j.comptc.2014.06.028Search in Google Scholar

[22] Irfan A., Al-Sehemi A.G., Al-Assiri M.S., Comp. Theor. Chem., 1031 (2014), 76.10.1016/j.comptc.2013.12.027Search in Google Scholar

[23] Zgierski M.Z., Lim E.C., Fujiwara T., Comp. Theor. Chem., 1036 (2014), 1.10.1016/j.comptc.2014.02.029Search in Google Scholar

[24] Mahmood A., Tahir M.H., IRFAN A., Al-Sehemi A.G., Al-Assiri M., Comp. Theor. Chem., 1066 (2015), 94.10.1016/j.comptc.2015.05.020Search in Google Scholar

[25] Irfan A., Abdullah G., Abdullah M.A., J. Theor. Comput. Chem., 11 (2012), 631.10.1142/S0219633612500411Search in Google Scholar

[26] Irfan A., J. Theor. Comput. Chem., 13 (2014), 1450013.10.1142/S0219633614500138Search in Google Scholar

[27] A. Irfan S., Muhammad, A.G. Al-Sehemi, M.S. Al-Assiri, A. Kalam, A.R. Chaudhry, J Theor Comput Chem, 14 (2015), 1550027.10.1142/S0219633615500273Search in Google Scholar

[28] Muhammad S., Irfan A., Al-Sehemi A.G., AlAssiri M.S., Kalam A., Chaudhry A.R., J. Theor. Comput. Chem., 14 (2015), 1550029.10.1142/S0219633615500297Search in Google Scholar

[29] Becke A.D., J. Chem. Phys., 98 (1993), 5648.10.1063/1.464913Search in Google Scholar

[30] Salvatori P., Amat A., Pastore M., Vitillaro G., Sudhakar K., Giribabu L., Soujanya Y., Angelis de F., Comp. Theor. Chem., 1030 (2014), 59.10.1016/j.comptc.2013.12.012Search in Google Scholar

[31] Fu J.-J., Duan Y.-A., Zhang J.-Z., Guo M.-S., Liao Y., Comp. Theor. Chem., 1045 (2014), 145.10.1016/j.comptc.2014.07.008Search in Google Scholar

[32] Irfan A., Kalam A., Chaudhry A.R., Al-Sehemi A.G., Muhammad S., Optik - Intern. J. Light Elect. Optics, 132 (2017), 101.10.1016/j.ijleo.2016.12.023Search in Google Scholar

[33] Sánchez-Carrera R.S., Coropceanu V., Silva da Filho D.A., Friedlein R., Osikowicz W., Murdey R., Suess C., Salaneck W.R., Brédas J.-L., J. Phys. Chem. B, 110 (2006), 18904.10.1021/jp057462pSearch in Google Scholar

[34] Wong B.M., Cordaro J.G., J. Chem. Phys., 129 (2008).10.1063/1.3025924Search in Google Scholar

[35] Matczak P., Comp. Theor. Chem., 983 (2012), 25.10.1016/j.comptc.2011.12.023Search in Google Scholar

[36] Fereyduni E., Vessally E., Yaaghubi E., Sundaraganesan N., Spectrochimica Acta A, 81 (2011), 64.10.1016/j.saa.2011.05.045Search in Google Scholar

[37] Irfan A., Al-Sehemi A.G., Chaudhry A.R., Muhammad S., Optik - Intern. J. Light Elect. Optics, 138 (2017), 349.10.1016/j.ijleo.2017.03.070Search in Google Scholar

[38] Strassner T., Taige M.A., J. chem. theor. comput., 1 (2005), 848.10.1021/ct049846+Search in Google Scholar

[39] Sousa S.F., Fernandes P.A., Ramos M.J., J. Phys. Chem. A, 111 (2007), 10439.10.1021/jp0734474Search in Google Scholar

[40] Musa K.A.K., Eriksson L.A., J. Phys. Chem. A, 112 (2008), 10921.10.1021/jp805614ySearch in Google Scholar

[41] Guillaumont D., Nakamura S., Dyes Pigm., 46 (2000), 85.10.1016/S0143-7208(00)00030-9Search in Google Scholar

[42] Al-SEHEMI A., Al-Melfi M., Irfan A., Struct. Chem., 24 (2013), 499.10.1007/s11224-012-0103-2Search in Google Scholar

[43] Irfan A., Al-Sehemi A., J. Mol. Model., 18 (2012), 4893.10.1007/s00894-012-1488-ySearch in Google Scholar

[44] Irfan A., Hina N., Al-Sehemi A., Asiri A., J. Mol. Model., 18 (2012), 4199.10.1007/s00894-012-1421-4Search in Google Scholar

[45] Irfan A., Al-Sehemi A.G., Kalam A., J. Mol. Struct., 1049 (2013), 198.10.1016/j.molstruc.2013.06.023Search in Google Scholar

[46] Al-Sehemi A.G., Irfan A., Al-Melfi M.A.M., Spectrochim. Acta A, 145 (2015), 40.10.1016/j.saa.2015.02.108Search in Google Scholar

[47] Irfan A., Jin R., Al-Sehemi A.G., Asiri A.M., Spectrochim. Acta A, 110 (2013), 60.10.1016/j.saa.2013.02.045Search in Google Scholar

[48] Al-Sehemi A.G., Irfan A., Fouda A.M., Spectrochim. Acta A, 111 (2013), 223.10.1016/j.saa.2013.04.010Search in Google Scholar

[49] Trujillo C., Lamsabhi A.M., Mó O., Yáñez M., Salpin J.-Y., Int. J. Mass Spectrom., 306 (2011), 27.10.1016/j.ijms.2011.05.018Search in Google Scholar

[50] Begtrup M., Balle T., Claramunt R.M.A., Sanz D., Jiménez J.A., Mó O., Yáñez M., Elguero J., J. Mol. Struct. (TheoChem), 453 (1998), 255.10.1016/S0166-1280(98)00214-0Search in Google Scholar

[51] Corral I., Mó O., Yáñez M., Int. J. Mass spectrom., 255 – 256 (2006), 20.10.1016/j.ijms.2005.12.022Search in Google Scholar

[52] Zhang C., Liang W., Chen H., Chen Y., Wei Z., Wu Y., J. Mol. Struct. (TheoChem), 862 (2008), 98.10.1016/j.theochem.2008.04.035Search in Google Scholar

[53] Irfan A., Al-Sehemi A.G., Muhammad S., Chaudhry A.R., Kalam A., Shkir M., AlSalami A.E., Asiri A.M., J. Saudi. Chem. Soc., 20 (2016), 680.10.1016/j.jscs.2014.12.009Search in Google Scholar

[54] Irfan A., Al-Sehemi A.G., Muhammad S., Chaudhry A.R., Al-Assiri M.S., Jin R., Kalam A., Shkir M., Asiri A.M., Comptes Rendus Chim., 18 (2015), 1289.10.1016/j.crci.2015.05.020Search in Google Scholar

[55] Scalmani G., Frisch M.J., Mennucci B., Tomasi J., Cammi R., Barone V., J. Chem. Phys., 124 (2006), 094107.10.1063/1.217325816526845Search in Google Scholar

[56] Marcus R.A., Rev. Mod. Phys., 65 (1993), 599.10.1103/RevModPhys.65.599Search in Google Scholar

[57] Brédas J.L., Calbert J.P., da Silva Filho D.A., Cornil J., Proc. Natl. Acad. Sci., 99 (2002), 5804.10.1073/pnas.09214339912285711972059Search in Google Scholar

[58] Gruhn N.E., da Silva Filho D.A., Bill T.G., Malagoli M., Coropceanu V., Kahn A., Brédas J.-L., J. Am. Chem. Soc., 124 (2002), 7918.10.1021/ja017589212095333Search in Google Scholar

[59] Reimers J.R., J. Chem. Phys., 115 (2001), 9103.10.1063/1.1412875Search in Google Scholar

[60] M. J. Frisch G.W.T., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A. JR., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., in: Gaussian 09, Revision A. 01„ Gaussian Inc., Wallingford, CT, 2009.Search in Google Scholar

[61] Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.I., Refson K., Payne M.C., Z. Kristallogr. Cryst. Mater., 220 (2005), 567.10.1524/zkri.220.5.567.65075Search in Google Scholar

[62] MATERIALSSTUDIO, (2013).Search in Google Scholar

[63] Perdew J.P., Wang Y., Phys. Rev. B, 45 (1992), 13244.10.1103/PhysRevB.45.1324410001404Search in Google Scholar

[64] Ayers P.W., Parr R.G., J. Am. Chem. Soc., 122 (2000), 2010.10.1021/ja9924039Search in Google Scholar

[65] Morell C., Grand A., Toro-Labbé A., J. Phys. Chem. A, 109 (2005), 205.10.1021/jp046577a16839107Search in Google Scholar

[66] Levine B.F., Bethea C.G., J. Chem. Phys., 63 (1975), 2666.10.1063/1.431660Search in Google Scholar

[67] Badan J., Hierle R., Perigaud A., Zyss J., Williams D., NLO properties of organic molecules and polymeric materials, in: American Chemical Society Symposium Series, American Chemical Society Washington DC, 1993.Search in Google Scholar

[68] Muhammad S., Irfan A., Shkir M., Chaudhry A.R., Kalam A., Alfaify S., Al-Sehemi A.G., Al-Salami A., Yahia I., Xu H.L., J. Comput. Chem., 36 (2015), 118.10.1002/jcc.2377725382405Search in Google Scholar

[69] Kurtz H.A., Stewart J.J.P., Dieter K.M., J. Comput. Chem., 11 (1990), 82.10.1002/jcc.540110110Search in Google Scholar

[70] Nagapandiselvi P., Baby C., Gopalakrishnan R., J. Mol. Struct., 1056 – 1057 (2014), 110.10.1016/j.molstruc.2013.10.007Search in Google Scholar

[71] Dehu C., Meyers F., Bredas J.L., J. Am. Chem. Soc., 115 (1993), 6198.10.1021/ja00067a039Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo