1. bookVolume 38 (2020): Issue 2 (June 2020)
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effective hydrogen gas sensor based on palladium nanoparticles dispersed on graphene sheets by spin coating technique

Published Online: 06 Oct 2020
Volume & Issue: Volume 38 (2020) - Issue 2 (June 2020)
Page range: 305 - 311
Received: 03 Apr 2018
Accepted: 23 Apr 2019
Journal Details
License
Format
Journal
eISSN
2083-134X
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

A room-temperature hydrogen gas (H2) sensor was successfully fabricated by dispersion of palladium nanoparticles (Pd NPs) on graphene sheets (GRs) (hereafter referred to as “Pd NPs/GRs”). GRs and Pd NPs were synthesized by chemical vapor deposition technique and by polyol process, respectively. A colloidal solution of Pd NPs with an average diameter of 11 nm was then dispersed onto the GRs by spin coating technique. The density of dispersed Pd NPs on GRs was controlled by varying the volume of the dispersed solution within the range of 50 – 150 μL. The fabricated Pd NPs/GRs sensors exhibited a high sensitivity for H2 gas with a concentration of 1500 – 6000 ppm at room temperature. Upon H2 exposure, the Pd NPs/GRs sensors showed an increase in electrical resistance, which could easily be measured. The relationship between sensor response and H2 concentration is in correspondence with the Langmuir adsorption model. The H2 detection limit is estimated to be 1 ppm. The results demonstrate that the Pd NPs/GRs sensor is an easily fabricated, but very effective means for room-temperature detection of H2at ppm level.

Keywords

[1] https://en.wikipedia.org/wiki/Hydrogen, accessed on: 2018.03.16.Search in Google Scholar

[2] Carcassi M.N., Fineschi F., Energy, 30 (2005), 1439.10.1016/j.energy.2004.02.012Search in Google Scholar

[3] Jun Y.K., Kim H.S., Lee J.H., Hong S.H., Sensor Actuat. B-Chem., 107 (2005) 264.10.1016/j.snb.2004.10.010Search in Google Scholar

[4] Wang B., Zhu L.F, Yang Y.H., Xu N.S., Yang G.W., J. Phys. Chem. C., 112 (2008) 6643.10.1021/jp8003147Search in Google Scholar

[5] Kanan S.M., El-Kadri O.M., Abu-Yousef A., Kanan M.C., Sensors-Basel, 9 (2009) 8158.10.3390/s91008158329210222408500Search in Google Scholar

[6] Gu H., Wang Z., Hu Y., Sensors-Basel, 12 (2012) 5517.Search in Google Scholar

[7] Katsnelson M.I., Mater. Today, 10 (2017), 20.10.1002/say.30359Search in Google Scholar

[8] Novoselev K.S., Fal’ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K., Nature, 490 (2012), 192.10.1038/nature1145823060189Search in Google Scholar

[9] Bechstedt F., Matthes L., Gori P., Pulci O., Appl. Phys. Lett., 100 (2012) 261906.10.1063/1.4731626Search in Google Scholar

[10] Geim A. K., Novoselev K.S., Nat. Mater., 6 (2007), 183.10.1038/nmat184917330084Search in Google Scholar

[11] Johnson J.L., Behnam A., Pearton S.J., Ural A., Adv. Mater., 22 (2010), 4877.10.1002/adma.20100179820803539Search in Google Scholar

[12] Wu W., Liu Z, Jauregui L.A., Yu Q., Pillai R., Cao H., Bao J., Chen Y.P., Pei S.S., Sensor Actuat. B-Chem., 150 (2010), 296.10.1016/j.snb.2010.06.070Search in Google Scholar

[13] Chung M.G., Kim D.-H., Seo D.K., Kim T., Im H.U., Lee H.M., Yoo J.-B., Hong S.-H., Kang T.J., Kim Y.H., Sensor Actuat. B-Chem., 169 (2012), 387.10.1016/j.snb.2012.05.031Search in Google Scholar

[14] Park Y., Kim S.S., Jeong H., Kang C.G., Park J.S., Song H., Lee R., Myoung N., Lee B.H., Seo S., Kim J.T., Jung G.Y., ACS Appl. Mater. Inter., 6 (2014) 13293.Search in Google Scholar

[15] Dong X., Wang P., Fang W., Su C.-Y., Chen Y.- H., Li L.-J., Huang W., Chen P., Carbon, 49 (2011), 3672.10.1016/j.carbon.2011.04.069Search in Google Scholar

[16] Nguyen V.T., Le H.D., Nguyen V.C., Ngo T.T.T., Le D.Q., Nguyen X.N., Phan N.M., Adv. Nat. Sci.: Nanosci. Nanotechnol., 4 (2013), 035012.10.1088/2043-6262/4/3/035012Search in Google Scholar

[17] Bai Z., Yang L., Li L., Lv J., Wang K., Zhang J., J. Phys. Chem. C., 113 (2009), 10568.10.1021/jp902713kSearch in Google Scholar

[18] Yang S., Dong J., Yao Z., Shen C., Shi X., Tian Y., Lin S., Zhang X., Sci. Rep.-UK, 4 (2014), 4501.10.1038/srep04501396845124675779Search in Google Scholar

[19] Wongwiriyapan W., Okabayashi Y., Minami S., Itabashi K., Ueda T., Shimazaki R., Ito T., Oura K., Honda S., Tabata H., Katayama M., Nanotechnology, 22 (2011), 055501.10.1088/0957-4484/22/5/05550121178258Search in Google Scholar

[20] Li J., Lu Y., Ye Q., Cinke M., Han J., Meyyappan M., Nano Lett., 3 (2003), 929.10.1021/nl034220xSearch in Google Scholar

[21] Muangrat W., Wongwiriyapan W., Yordsri V., Chobsilp T., Inpaeng S., Issro C., Domanov O., Ayala P. Pichler T., Shi L., Phys. Status Solidi A., 215 (2018), 1800004.10.1002/pssa.201800004Search in Google Scholar

[22] Kumar R., Malik S., Mehta B.R., Sensor Actuat. B-Chem., 209 (2015), 919.10.1016/j.snb.2014.12.037Search in Google Scholar

[23] Xia F., Perebeinos V., Lin Y.-M., Wu Y., AVOURIS P., Nat. Nanotechnol., 6 (2011), 179.10.1038/nnano.2011.621297624Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo