Open Access

Prediction of Scour Depth Around Bridge Piers Using Evolutionary Neural Network


Cite

[1] Laursen, E.M. and Toch, A. (1956). Scour around bridge piers and abutments, Iowa Road Res. Board, 4:60.Search in Google Scholar

[2] Shen H.W. (1971). River mechanics. New York, USA: John Wiley and Sons, 1971, 2: 23.Search in Google Scholar

[3] Hancu S (1971). Sur le calcul des affouillements locaux dams la zone des piles des ponts. Proc. 14th IAHR Congress. Paris, France, 3, 299-313.Search in Google Scholar

[4] Breusers H. N. C., Nicollet G. and Shen H. W. (1977). Local scour around cylindrical piers. J. Hydr. Res., 15(3), 211-252. DOI: 10.1080/0022168770949964510.1080/00221687709499645Open DOISearch in Google Scholar

[5] U. S. DoT (1992). Evaluating scour at bridges, hydraulic Engineering circular 18, Federal Highway administration, 2, 1-4.Search in Google Scholar

[6] Melville B. W. and Chiew Y. M. (1999). Time scale for local scour depth at bridge piers. J. Hydr. Eng., 125(1), 59-65. DOI: 10.1061/(ASCE)0733-9429(1999)125:1(59)10.1061/(ASCE)0733-9429(1999)125:1(59Open DOISearch in Google Scholar

[7] Lee, T. L., Jeng, D. S., Zhang, G. H. and Hong, J. H. (2007). Neural network modeling for estimation of scour depth around bridge piers, Journal of Hyrodynamics, 19(3), 378-386. DOI: 10.1016/S1001-6058(07)60073-010.1016/S1001-6058(07)60073-0Open DOISearch in Google Scholar

[8] Bateni, S.M., Borghei, S.M. and Jeng, D.S. (2007). Neural network and neuro-fuzzy assessments for scour depth around bridge piers, Engineering Applications of Artificial Intelligence, 20 (3), 401-414. DOI: 10.1016/j.engappai.2006.06.01210.1016/j.engappai.2006.06.012Search in Google Scholar

[9] Ismail A., Jeng D.-S., Zhang, L.L. and Zhang, J.-S. (2013). Predictions of bridge scour: Application of a feed-forward neural network with an adaptive activation function, Engineering Applications of Artificial Intelligence, 26, 1540–1549. DOI: 10.1016/j.engappai.2012.12.01110.1016/j.engappai.2012.12.011Open DOISearch in Google Scholar

[10] Akib, S., Mohammadhassani, M. and Jahangirzadeh, A. (2014). Application of ANFIS and LR in prediction of scour depth in bridges, Computers & Fluids, 91, 77-86, DOI: 10.1016/j.compfluid.2013.12.00210.1016/j.compfluid.2013.12.002Search in Google Scholar

[11] Ebtehaj, I., Hossein Bonakdari, H., Moradi, F., Gharabaghi, B. And Khozani, Z. S. (2018). An integrated framework of Extreme Learning Machines for predicting scour at pile groups in clear water condition, Coastal Engineering, 135, 1-15. DOI: 10.1016/j.coastaleng.2017.12.012310.1016/j.coastaleng.2017.12.0123Open DOISearch in Google Scholar

[12] Chou, J.-S. And Pham, A.-D. (2014). Hybrid computational model for predicting bridge scour depth near piers and abutments, Automation in Construction, 48, 88-96. DOI: 10.1016/j.autcon.2014.08.00610.1016/j.autcon.2014.08.006Open DOISearch in Google Scholar

[13] Pang, A. L. J., Skote, M., Lim, S.Y., Gullman-Strand, J. and Morgan, N. (2016). A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents, Applied Ocean Research, 57, 114-124. DOI: 10.1016/j.apor.2016.02.010.10.1016/j.apor.2016.02.010Open DOISearch in Google Scholar

[14] Matinez-Garcia F. J. and Moreno-Perez, J. A. (2008). Jumping frogs optimization: a new swarm method for discrete optimization, Technical Report DEIOC 3/2008, Department of Statistics, O.R. and Computing, University of La Laguna, Tenerife, Spain.Search in Google Scholar

[15] Kennedy, J. and Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm, Proceedings of IEEE Conference on Systems, Man, and Cybernetics, Iscataway, New Jersey,USA, p. 4104-4109.Search in Google Scholar

[16] Consoli, S., Moreno-Perez, J. A., Darby-Dowman, K. and Mladenovic, N. (2010). Discrete particle swarm optimisation for the minimum labelling steiner tree problem, Natural Computing, 9(1), pp. 29–46.10.1007/s11047-009-9137-9Search in Google Scholar

[17] Seren, C. (2011). A hybrid jumping particle swarm optimisation method for high dimensional unconstrained discrete problems, IEEE Congress on Evolutionary Computation (CEC), p. 1649-1656, 2011.10.1109/CEC.2011.5949813Search in Google Scholar

[18] Durbin R. and Rumelhart, R. (1989). Product units: A computationally powerful and biologically plausible extension to backpropagation networks. Neural computation, 1, 133–142. DOI: 10.1162/neco.1989.1.1.13310.1162/neco.1989.1.1.133Open DOISearch in Google Scholar

[19] Melville, B. W., & Chiew, Y. M. (1999). Time scale for local scour at bridge piers. Journal of Hydraulic Engineering, 125(1), 59-65.10.1061/(ASCE)0733-9429(1999)125:1(59)Search in Google Scholar

[20] Buckingham, E. (1914). On physically similar systems; illustrations of the use of dimensional equations”. Physical Review. 4 (4): 345–376.10.1103/PhysRev.4.345Search in Google Scholar

[21] Jin, Y., Okabe, T. and Sendhoff, B. (2004). Neural network regularization and ensembling using multiobjective evolutionary algorithms, Congress on Evolutionary Computation (CEC’04), IEEE Press, 1–8.Search in Google Scholar

[22] Goh, A. T. C. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, (9):143–151.10.1016/0954-1810(94)00011-SSearch in Google Scholar

[23] Rahman, M. S., Wang, J., Deng, W. and Carter, J. P. (2001). A neural network model of the uplift capacity of suction caissons. Computers and Geotechnics, 28:269–287.10.1016/S0266-352X(00)00033-1Search in Google Scholar

[24] Firat, M. and Gungor, M. (2009). Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Adv. Eng. Software, 40, 731–737. DOI: 10.1016/j.advengsoft.2008.12.00110.1016/j.advengsoft.2008.12.001Open DOISearch in Google Scholar

[25] Abidin, K. (2010). Artificial neural network study of observed pattern of scour depth around bridge piers. Comput. Geotech. 37, 413–418. DOI: 10.1016/j.compgeo.2009.10.00310.1016/j.compgeo.2009.10.003Open DOISearch in Google Scholar

eISSN:
2066-6934
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other