1. bookVolume 10 (2014): Issue 1 (March 2014)
Journal Details
License
Format
Journal
eISSN
2784-1391
First Published
12 Apr 2013
Publication timeframe
4 times per year
Languages
English
Open Access

Using the Analytic Hierarchy Process to Prioritize and Select Phase Change Materials for Comfort Application in Buildings

Published Online: 12 Apr 2014
Volume & Issue: Volume 10 (2014) - Issue 1 (March 2014)
Page range: 21 - 28
Journal Details
License
Format
Journal
eISSN
2784-1391
First Published
12 Apr 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Phase change materials (PCMs) selection and prioritization for comfort application in buildings have a significant contribution to the improvement of latent heat storage systems. PCMs have a relatively large thermal energy storage capacity in a temperature range close to their switch point. PCMs absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. Thermal energy storage systems using PCMs as storage medium offer advantages such as: high heat storage capacity and store/release thermal energy at a nearly constant temperature, relative low weight, small unit size and isothermal behaviour during charging and discharging when compared to the sensible thermal energy storage. PCMs are valuable only in the range of temperature close to their phase change point, since their main thermal energy storage capacity depend on their mass and on their latent heat of fusion. Selection of the proper PCMs is a challenging task because there are lots of different materials with different characteristics. In this research paper the principles and techniques of the Analytic Hierarchy Process (AHP) are presented, discussed and applied in order to prioritize and select the proper PCMs for comfort application in buildings. The AHP method is used for solving complex decisional problems and allows the decision maker to take the most suitable decisions for the problem studied. The results obtained reveal that the AHP method can be successfully applied when we want to choose a PCM for comfort application in buildings.

Keywords

[1] Liu, M., Saman, W., Bruno, F. (2012). Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems, Renewable and Sustenable EnergyReviews, Vol. 16, pp. 2118-2132Search in Google Scholar

[2] Dincer I., Rosen, M.A., (2002). Thermal energy storage: storage and applications, John Wiley &Sons, Vol. 57-59Search in Google Scholar

[3] Rathod, M.K., Kanzaria, H.V. (2011). A methodological concept for phase change material selection based on multimple criteria decision analysis with and without fuzzy environment, Material and Design, Vol. 32, pp. 3578-3585Search in Google Scholar

[4] Rodriguez-Ubinas, E., Ruiz-Valero, L., Vega, S., Neila, J. (2012). Applications of phase change material in highly energy-efficient houses, Energy and Buildings, Vol. 50, pp. 49-62Search in Google Scholar

[5] Sharma, A., Tyagi, V.V., Chen, C.R., Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 318-345Search in Google Scholar

[6] Abhat, A., (1983). Low temperature latent heat thermal energy storage: heat storage materials, Solar Energy, Vol. 30, No. 4, pp. 313-332Search in Google Scholar

[7] Saaty, T.L. (2008). Decision making with the analytic hierarchy process, International journal services sciences, vol. 1, no. 1, pp. 83-98Search in Google Scholar

[8] Datta, A., Ray, A., Bhattacharya, G., Saha, H. (2011). Green energy sources (GES) selection based on multi-criteria decision analysis (MCDA), International Journal of Energy Sector Management, Vol. 5, No. 2, pp. 271-286Search in Google Scholar

[9] Socaciu, L.G. (2011). Studii si cercetari privind utilizarea teoriei fuzzy in cadrul procesului de dezvoltare a produselor pe baza cerintelor clientului, Teza de doctorat, Universitatea Tehnica din Cluj-Napoca.Search in Google Scholar

[10] Ray,A., Sarkar, B., Sanyal, S. (2010). The TOC-based algorithm for solving multiple constraint resources, IEEETransactions on Engineering Management, Vol. 57, No. 2, pp.301-310Search in Google Scholar

[11] ***Climsel C24 (accessed may 2013), available at: http://www.climator.com/files/products/climsel-c24.pdfSearch in Google Scholar

[12]Koekenbier, S.F. (2011). PCM energy storage during defective thermal cycling, Design of the “Capacity Cube”and modelling of PCM pouches to trace the impact of incomplete thermal cycling, Thesis MSc-ME, Delft University of Technology.Search in Google Scholar

[13] ***PlusIce, (accessed may 2013), available at: http://www.pcmproducts.net/files/PlusICE%20Range-2013.pdfSearch in Google Scholar

[14]***Rubitherm, (accessed may 2013), available at: http://www.rubitherm.de/english/index.htmSearch in Google Scholar

[15]Evers, A. (1989). Development of quantitative measure of the functionality of frame walls enhanced with phasechange materials using a dynamic wall simulator, Thesis MSc in Arhitectural Engineering, Wichita State University, Wichita, KansasSearch in Google Scholar

[16]Rouault, F., Bruneau, D., Sebastian, P., Ango, S.E., Lopez, J. (2012). Numerical modelling and experimental study of a box-section tube bunde thermal energy storage for free-cooling of buildings, The 12th International Conference on Energy Storage, Innstock, available at: http://hal.archives-ouvertes.fr/docs/00/80/50/28/PDF/Paper_Innostock_2012_-_INNO-SP-59.pdf, accessed may 2013Search in Google Scholar

[17] ***TEAP, (accessed may 2013), available at: http://www.teappcm.com/products.htmSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo