1. bookVolume 52 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
1899-8526
First Published
05 Feb 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

Mineralogical studies of the Maastrichtian Gerinya Claystone of the Patti Formation, southern Bida Basin, Nigeria: Implication for industrial application

Published Online: 31 Dec 2021
Volume & Issue: Volume 52 (2021) - Issue 1 (January 2021)
Page range: 10 - 18
Received: 11 Mar 2021
Accepted: 20 Dec 2021
Journal Details
License
Format
Journal
eISSN
1899-8526
First Published
05 Feb 2007
Publication timeframe
1 time per year
Languages
English
Abstract

The mineralogical compositions of the Gerinya claystone, Patti Formation, Southern Bida Basin, Nigeria, were investigated to infer their sedimentological process and industrial application. Mineralogical analysis of the claystone was carried out using the X-ray diffraction (XRD) method. The diffractogram peaks aided the identification of the clay and non-clay minerals in the study area. The XRD showed kaolinite as the major clay mineral with compositions ranging from 10.8 - 67.6 wt%. The non-clay minerals were quartz, anatase, diopside, goethite, hematite, rutile, muscovite and micro-cline. Among the non-clay minerals, quartz had the highest percentage mineralogical composition of 21.2 to 83.4 wt%. The mineral assemblage is typical of a hot and humid climate where chemical alteration and hydrolysis of silicate minerals are severe. The sediments are of mafic and felsic crystalline rocks origin. The sediments are of low energy floodplain/interchannel depositional environment. The Gerinya claystone vary from low to high porosity and very low to low permeability. The claystone can be used as clay liners and as raw material for ceramic production. The application of the claystones in fertiliser production will require some processing. The clay-stone can be used for haemorrhage control in the pharmacological/medical sector. Although, the ingestion of the clay-stones could lead to dental damage and possible perforation of the sigmoid colon in the gastrointestinal tract.

Keywords

Abrahams, P.W., & Parsons, J.A. (1997). Geophagy in the tropic: an appraisal of three geophagic materials. Environmental Geochemistry and Health, 19, 19–22. Search in Google Scholar

Aldega, L., Bigi, S., Carminati, E., Trippetta, F., Corrado, S., & Kavoosi, M.A. (2018). The zagros foldand-thrust belt in the fars province (Iran): II. thermal evolution. Marine and Petroleum Geology, 93, 376–390.10.1016/j.marpetgeo.2018.03.022 Search in Google Scholar

Aldega, L., Carminati, E., Scharf, A., Mattern, F., & Al-Wardi, M. (2017). Estimating original thickness and extent of the semail ophiolite in the eastern Oman Mountains by paleothermal indicators. Marine and Petroleum Geology, 84, 18–33.10.1016/j.marpetgeo.2017.03.024 Search in Google Scholar

Benson, C.H., Zhai, H., & Wang, X. (1994). Estimating hydraulic conductivity of clay liners. Journal of Geotechnical Engineering, ASCE, 2, 366–387.10.1061/(ASCE)0733-9410(1994)120:2(366) Search in Google Scholar

Brand, C.E., De Jager, L., & Ekosse, G.E. (2010). Possible health effects associated with human geophagic practice: an overview. South African Medical Technology, 1, 11–13. doi/10.10520/EJC74222. Search in Google Scholar

Corrado, S., Aldega, L., Celano, A.S., De Benedetti, A.A., & Giordano, G. (2014). Cap rock efficiency and fluid circulation of natural hydrothermal systems by means of XRD on clay minerals (Sutri, Northern Latium, Italy). Geothermics, 50, 180–188.10.1016/j.geothermics.2013.09.011 Search in Google Scholar

Cox, M.E. & Brown, P. (1998). Hydrothermal alteration miner-alogy as an indicator of hidrology at the Ngahwa geothermal field, New Zealand. Geothermics, 27, 259–270.10.1016/S0375-6505(97)10015-3 Search in Google Scholar

Daniel, D.E. (1993). Clay liners. In: Geotechnical Practice for Waste Disposal, (ed. David E. Daniel) Chapman & Hall, London, UK, 137–163. doi/10.1007/978-1-4615-3070-1.10.1007/978-1-4615-3070-1_7 Search in Google Scholar

Ekosse, G.E., De Jager, L., & Ngole, V.M. (2010). Traditional mining and mineralogy of geophagic clays from Limpopo and free state provinces, South Africa. African Journal of Biotechnology, 47, 8058–8067. Search in Google Scholar

Geissler, P.W., Mwaniki, D., Thiong’O, F., & Friis, H. (1998). Geophagy as a risk factor for geohelminth infections: a longitudinal study of Kenyan primary school children. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1, 7–11.10.1016/S0035-9203(98)90934-8 Search in Google Scholar

Grand View Research. (2020). Kaolin market size, share and trends analysis report by application (paper, ceramics, paint and coatings, fiber glass, plastic, rubber, cosmetics, pharmaceutical and medical) by region and segment forecasts, 2020 – 2027. report ID: 978-1-68038-337-9. (Accessed 22 March 2021) https://www.grandviewresearch.com/industry-analysis/ka-olin-market Search in Google Scholar

Hower, J., Eslinger, E., Hower, M.E., & Perry, E.A. (1976). Mechanism of burial metamorphism of argillaceous sediment: mineralogical and chemical evidence. Geological Society of America Bulletin, 5, 725–737.10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2 Search in Google Scholar

Kawai, K., Saathoff, E., Antelman, G., Msamanga, G., & Fawzi, W.W. (2009). Geophagy (soil-eating) in relation to anaemia and helminth infection among HIV-infected pregnant women in Tanzania. The American Journal of Tropical Medicine and Hygiene, 1, 36–43.10.4269/ajtmh.2009.80.36 Search in Google Scholar

Long, M., Zhang, B., Peng, S., Liao, J., Zhang, Y., Wang, J., Wang, M., Qin, B., Huang, J., Huang, J., Chen, X., & Yang, H. (2019). Interactions between two-dimensional nanoclay and blood cells in hemostasis. Materials Science and Engineering C, 105, 110081. doi: 10.1016/j.msec.2019.110081.10.1016/j.msec.2019.110081 Search in Google Scholar

Mpuchane, S., Ekosse, G., Gashe, B., Morobe, I., & Coetzee, S. (2008). Mineralogy of southern African medicinal and cosmetic clays and their effects on the growth of selected test microorganisms. Fresenius Environment Bulletin, 15, 547–557. Search in Google Scholar

Murray, H.H. (2007). Applied Clay Mineralogy. Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite–Sepiolite, and Common Clays, 1st ed.; Elsevier: Oxford, UK. 189. doi.org/978-0-444-51701-2. Search in Google Scholar

National Fertilizer Company of Nigeria (NAFCON), 1985. Tender document for supply of kaolin from Nigeria sources, p 65. In: Akinola, O.O., & Obasi, R.A. (2014). Compositional characteristics and industrial potential of the lateritic clay deposit in Ara-Ijero Ekiti areas, southwestern Nigeria. International Journal of Scientific and Technology Research, 3, 304–311. Search in Google Scholar

Nesbitt, H.W., & Young, G.M. (1989). Formation and diagenesis of weathering profiles; Journal of Geology, 97, 129–147. doi.org/10.1086/629290. Search in Google Scholar

Obaje, N.G. (2009). Geology and mineral resources of Nigeria. Springer-Verlag Berlin Heidelberg, 221. doi. org/10.1007/978-3-540-92685-6.10.1007/978-3-540-92685-6 Search in Google Scholar

Odewumi, S.C. (2013). Mineralogy and geochemistry of geophagic clays from Share area, northern Bida sedimentary basin, Nigeria. African Journal of Natural Science, 16, 87–98.10.4172/2329-6755.1000108 Search in Google Scholar

Ojo, O.J., & Akande, S.O. (2009). Sedimentology and depositional environments of the Maastrichtian Patti Formation, southeastern Bida Basin, Nigeria. Cretaceous Research, 30, 1415–1425.10.1016/j.cretres.2009.08.006 Search in Google Scholar

Ojo O.J., & Akande S.O. (2020). A revised stratigraphy of the Bida Basin, Nigeria by Rahaman et al., (2019) [Journal of African Earth Sciences., 151, 67–81]: A rebuttal. Journal of African Earth Sciences, 172, 103983. Search in Google Scholar

Okunlola, O.A., & Owoyemi, K.A. (2015). Compositional characteristics of geophagic clays of Southern Nigeria. Earth Science Research, 4(2), 10-15. Search in Google Scholar

Olabode, S.O. (2016). Soft sediment deformation structures in the Maastrichtian Patti Formation, southern Bida Basin Nigeria: implications for the assessment of endogenic triggers in the Maastrichtian sedimentary record. Open Journal of Geology, 6, 410–438.10.4236/ojg.2016.66036 Search in Google Scholar

Oyebanjo, O., Ekosse, G., & Odiyo, J., (2020). Physico-Chemical, Mineralogical, and Chemical Characterisation of Cretaceous–Paleogene/Neogene Kaolins within Eastern Dahomey and Niger Delta Basins from Nigeria: Possible Industrial Applications. Minerals, 10, 670. doi:10.3390/min10080670.10.3390/min10080670 Search in Google Scholar

Singh, P. (2009). Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chemical Geology, 266, 242–255.10.1016/j.chemgeo.2009.06.013 Search in Google Scholar

Strazzera, B., Dondi, M., & Marsigli, M. (1997). Composition and ceramic properties of tertiary clays from southern Sardinia (Italy). Applied Clay Science, 12, 247–266.10.1016/S0169-1317(97)00010-0 Search in Google Scholar

Velde, B., & Meunier A. (2008). The origin of clay minerals in soils and weathered rocks. Berlin, Heidelberg: Springer. doi.org/10.1007/978-3-540-75634-7.10.1007/978-3-540-75634-7 Search in Google Scholar

Velde, B. (1992). Introduction to Clay Minerals. Dordrecht: Springer. doi.org/10.1007/978-94-011-2368-6.10.1007/978-94-011-2368-6 Search in Google Scholar

Velde, B. (1995). Origin and Mineralogy of Clays. Berlin, Heidelberg: Springer. doi.org/10.1007/978-3-662-12648-6.10.1007/978-3-662-12648-6 Search in Google Scholar

Wentworth, C.K. (1922). A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377–392.10.1086/622910 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo