1. bookVolume 52 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
1899-8526
First Published
05 Feb 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

Simple steps for the detection and classification of different lamprophyric rocks: a case study from Greece

Published Online: 03 Nov 2021
Volume & Issue: Volume 52 (2021) - Issue 1 (January 2021)
Page range: 1 - 9
Received: 25 Jun 2021
Accepted: 28 Sep 2021
Journal Details
License
Format
Journal
eISSN
1899-8526
First Published
05 Feb 2007
Publication timeframe
1 time per year
Languages
English
Abstract

This study aims to help non-expert geologists in locating, classifying and analyzing lamprophyres, the exotic and complex rocks. The process includes three basic steps, a macroscopic study of the formation, petrographic microscopy and lastly whole-rock and trace element analyses of the samples. Fourteen Greek lamprophyric rocks with distinct characteristics were used. Conventional lamprophyres were considered along with rarer alkali minettes, meta-lamprophyres, lamproschists, appinites and para-lamproites.

Keywords

Carlier, G., Lorand, J. P., Bonhomme, M. & Carlotto, V. (1996). A reappraisal of the Cenozoic inner arc magmatism in southern Peru: consequences for the evolution of the Central Andes for the past 50 Ma. Third ISAG, (pp. 551-554). St. Malo, France. Search in Google Scholar

Chonghe, L. F. S. X. Z. (1991). A suggestion on classification of lamprophyres. Geological Science and Technology Information, S1. Search in Google Scholar

Christofides, G., Eleftheriadis, G., Esson, J., Soldatos, T., Koroneos, A., & Brocker, M. (2000). The evolution of the Samothraki granitic pluton (N. Aegean Sea, Greece). Geochronology, chemical and isotopic constraints for AFC modeling. Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean (pp. 193-209). Nicosia, Cyprus. Search in Google Scholar

Djiba, A. (2018). Porphyrische Cu-Mo-Au-Re und epithermale Au-Ag-Te Vererzungen der Insel Limnos, nordöstliche Ägäis, Griechenland: Mineralogie-Mineralchemie der hydrothermalen Alterationen und damit verbundene Vererzungen. Doctoral dissertation, Universität Hamburg, Germany. Search in Google Scholar

Foley, S., Venturelli, G., Green, D. H., & Toscani, L. (1987). The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models. Earth-Science Reviews, 24(2), 81-134.10.1016/0012-8252(87)90001-8 Search in Google Scholar

Georgiades, A. N. (1938). La Kersantite du Couvent de St. Gregoire, dans le Mont Athos. Praktika Akademias Athenon, 13, 487-491. Search in Google Scholar

Gill, R. (2011). Igneous rocks and processes: a practical guide. Oxford: John Wiley & Sons. Search in Google Scholar

Hastie, A. R., Kerr, A. C., Pearce, J. A., & Mitchell, S. F. (2007). Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th–Co discrimination diagram. Journal of Petrology, 48(12), 2341-2357. DOI:10.1093/petrology/egm06210.1093/petrology/egm062 Search in Google Scholar

Kamvisis, I.-N. (2010). Occurrences of lamprophyric rocks in Greece. Neues Jahrbuch fur Mineralogie Abhandlungen 187(2), 225-234. DOI: 10.1127/0077-7757/2010/017310.1127/0077-7757/2010/0173 Search in Google Scholar

Krmíček, L., & Krmíčková, M. (2010). Recent view on a defini-tion and classification of lamprophyres. Mineralogia— Special Papers, 37, 47-48. Search in Google Scholar

Krmíček, L., Halavinova, M., Romer, R. L., Galiova, M. V., & Vaculovic, T. (2014). Phlogopite/matrix, cpx/matrix and cpx/phlogopite trace-element partitioning in a calc-alkaline lamprophyre: new constrains from the Krizanovice minette dyke (Bohemian Massif). Journal of Geosciences, 59(1), 87-96. DOI: 10.3190/jgeosci.16010.3190/jgeosci.160 Search in Google Scholar

Krmíček, L., Romer, R. L., Timmerman, M. J., Ulrych, J., Glodny, J., Přichystal, A., & Sudo, M. (2020). Long-lasting (65 Ma) regionally contrasting late-to post-orogenic Vari-scan mantle-derived potassic magmatism in the Bohemian Massif. Journal of Petrology, 61(7), egaa072. DOI:10.1093/petrology/egaa07210.1093/petrology/egaa072 Search in Google Scholar

Le Bas, M., (2007). Igneous rock classification revisited 4: Lamprophyres. Geology Today, 23, 167-168. Search in Google Scholar

Le Maitre, R. W. (1989). A classification of igneous rocks and glossary of terms. Recommendations of the IUGS Subcommission on the Systematics of Igneous rocks. London: Blackwell Scientific Publications. Search in Google Scholar

Le Maitre, R. W. (2002). Igneous rocks. a Classification and Glossary of Terms. Recommendations of the IUGS Sub-commission on the Systematics of Igneous Rocks. (2nd Ed.). Cambridge: Cambridge University Press.10.1017/CBO9780511535581 Search in Google Scholar

Ma, L., Jiang, S. Y., Hofmann, A. W., Dai, B. Z., Hou, M. L., Zhao, K. D., Chen, L. H., Li, J. W., & Jiang, Y. H. (2014). Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: a consequence of rapid lithospheric thinning beneath the North China Craton?. Geochimica et Cosmochimica Acta, 124, 250-271. DOI:10.1016/j.gca.2013.09.03510.1016/j.gca.2013.09.035 Search in Google Scholar

Mathieu, L., Bouchard, É., Guay, F., Liénard, A., Pilote, P., & Goutier, J. (2018). Criteria for the recognition of Archean calc-alkaline lamprophyres: examples from the Abitibi Subprovince. Canadian Journal of Earth Sciences, 55(2), 188-205. DOI:10.1139/cjes-2017-015210.1139/cjes-2017-0152 Search in Google Scholar

Mitchell, R. H., & Bergman, S. C. (1991). Petrology of Lamproites. New York: Plenum Press.10.1007/978-1-4615-3788-5 Search in Google Scholar

Mitchell, R. H. (2020). Igneous Rock Associations 26. Lamproites, Exotic Potassic Alkaline Rocks: A Review of their Nomenclature, Characterization and Origins. Geoscience Canada: Journal of the Geological Association of Canada/Geoscience Canada: journal de l’Association Géologique du Canada, 47(3), 119-142. DOI: https://doi.org/10.12789/geocanj.2020.47.16210.12789/geocanj.2020.47.162 Search in Google Scholar

O’Neill, C., & Wyman, D. A. (2006). Geodynamic modelling of Late Archean subduction. Pressure temperature constraints from greenstone belt diamond deposits. In K. Benn, J.-C. Mareschal & K. C. Condie (Eds.), Washington DC American Geophysical Union Geophysical Monograph Series 164 (pp. 177-188). Washington, D.C.: American Geophysical Union. Search in Google Scholar

Pe-Piper, G., Piper, D. J. W., Koukouvelas, I., Dolansky, L. M., & Kokkalas, S. (2009). Postorogenic shoshonitic rocks and their origin by melting underplated basalts: The Miocene of Limnos, Greece. Geological Society of America Bulletin, 121(1/2), 39–54. DOI: 10.1130/B26317.110.1130/B26317.1 Search in Google Scholar

Perring, C. S., Rock, N. M., Golding, S. D., & Roberts, D. E. (1989). Criteria for the recognition of metamorphosed or altered lamprophyres: a case study from the Archaean of Kambalda, Western Australia. Precambrian Research, 43(3), 215-237. DOI:10.1016/0301-9268(89)90057-010.1016/0301-9268(89)90057-0 Search in Google Scholar

Rao, N. C., Giri, R. K., Sharma, A., & Pandey, A. (2020). Lamprophyres from the Indian shield: A review of their occur-rence, petrology, tectonomagmatic significance and relationship with the Kimberlites and related rocks. Episodes Journal of International Geoscience, 43(1), 231-248. DOI:10.18814/epiiugs/2020/02001410.18814/epiiugs/2020/020014 Search in Google Scholar

Rock, N. M. S. (1984). Nature and origin of calc-alkaline lamprophyres: minettes, vogesites, kersantites and spessartites. In Transactions of the Royal Society of Edinburgh, 74, 193–227. DOI:10.1017/S026359330001366310.1017/S0263593300013663 Search in Google Scholar

Rock, N. M. S. (1987). The nature and origin of lamprophyres: an overview. In: J. G. Fitton, & B. G. J. Upton, (Eds.), Alkaline Igneous Rocks, Special Publications, 30, (pp. 191-226). London: Geological Society of London DOI:10.1144/GSL.SP.1987.030.01.0910.1144/GSL.SP.1987.030.01.09 Search in Google Scholar

Rock, N. M. S. (1991). Lamprophyres. Glasgow: Blackie and Son Ltd. Search in Google Scholar

Scarrow, J. H., Bea, F., Montero, P., & Molina, J. F. (2008). Shoshonites, vaugnerites and potassic lamprophyres: similarities and differences between ‘ultra’-high-K rocks. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 99(3-4), 159-175. DOI: 10.1017/S175569100900803210.1017/S1755691009008032 Search in Google Scholar

Soder, C. (2017). Geochemistry and petrology of lamprophyres from the Hellenides and the European Variscides. Doctoral dissertation, University of Heidelberg, Heidelberg, Germany. Search in Google Scholar

Streckeisen, A. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. Neues Jahrbuch fur Mineralogie Abhandlungen, 143, 1-14. Search in Google Scholar

Tappe, S., Foley, S. F., Jenner, G. A., & Kjarsgaard, B. A. (2005). Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications. Journal of Petrology, 46(9), 1893-1900. DOI:10.1093/petrology/egi03910.1093/petrology/egi039 Search in Google Scholar

Vladykin, N. V. (2008). Formation types of lamproite complexes-systematization and chemism. 9th International Kimberlite Conference, Frankfurt, Germany, Extended Abstract No. 9IKCA-00409. Search in Google Scholar

Wimmenauer W., (1973). Lamprophyre, Semilamprophyre und anchibasaltische Ganggesteine. Fortschritte der Mineralogie, 51, 3-67. Search in Google Scholar

Woolley, A. R., Bergman, S. C., Edgar, A. D., Le Bas, M. J., Mitchell, R. H., Rock, N. M. S., & Smith, B. H. S. (1996). Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic and leucitic rocks. Canadian Mineralogist, 34, 175-186. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo