Open Access

Increasing the Efficiency of Titanium-Iron ORE Enrichment Through Using New Type Separators

, ,  and   
Dec 31, 2024

Cite
Download Cover

Fayed H., Ragab S., 2015 Numerical Simulations of Two-Phase Flow in a Self-Aerated Flotation Machine and Kinetics Modeling, Minerals. Vol.5, Issue 2, P.164–188. Search in Google Scholar

Shibatani S., Nakanishi M., Mizuno N. et al., 2016 Development of superconducting high gradient magnetic separation system for scale removal from feed-water in thermal power plant, Progress in Superconductivity and Cryogenics. Vol. 18, No. 1. Р. 19–22. DOI:10.9714/psac.2016.18.1.019 Search in Google Scholar

Malyarov P., Dolgov O., Kovalev, P., 2020 Mineral raw material disintegration mechanisms in ball mills and distribution of grinding energy between sequential stages Mining of Mineral Deposits, 14(2), 25-33. https://doi.org/10.33271/mining14.02.025 Search in Google Scholar

Mustakhimov A., Zeynullin A., 2020 Scaled-up laboratory research into dry magnetic separation of the Zhezdinsky concentrating mill tailings in Kazakhstan. Mining of Mineral Deposits, 14(3), 71-77. https://doi.org/10.33271/mining14.03.071 Search in Google Scholar

Abdelhaffez G.S., 2018 Estimation of the wear rate associated with ball mill of Mahd Ad Dahab gold mine, Saudi Arabia (KSA). Mining of Mineral Deposits, 12(3), 36-44. https://doi.org/10.15407/mining12.03.036 Search in Google Scholar

Moshynskyi V., Malanchuk Z., Tsymbaliuk V., Malanchuk L., Zhomyruk R., Vasylchuk O., 2020 Research into the process of storage and recycling technogenic phosphogypsum placers. Mining of Mineral Deposits, 14(2), 95-102. https://doi.org/10.33271/mining14.02.095 Search in Google Scholar

Kwon H.W., Kim J.J., Ha D.W. et al., 2017 Superconducting magnetic separation of ground steel slag powder for recovery of resources Progress in Superconductivity and Cryogenics. V. 19. No. 1. Р. 22−25. DOI: 10.9714/psac.2017.19.1.022/ Search in Google Scholar

Zhu Zian, Wang Meifen, Ning Feipeng et al., 2017 Recent development of high gradient superconducting magnetic separator for kaolin in China Progress in Superconductivity and Cryogenics. V. 19. No. 1. Р. 5−8. DOI: 10.9714/psac.2017.19.1.005. Search in Google Scholar

He S., Yang C., Li S., Zhang C., 2017 Enrichment of valuable elements from vanadium slag using superconducting HGMS technology Progress in Superconductivity and Cryogenics. V. 19. No. 1. Р. 17−21. DOI: 10.9714/psac.2017.19.1.017 Search in Google Scholar

Hurets L.L., Kozii I.S., Miakaieva H.M., 2017 Directions of the environmental protection processes optimization at heat power engineering enterprises. Journal of Engineering Sciences, 4 (2), g12–g16. DOI: http://doi.org/10.21272/jes.2017.4(2).g12 Search in Google Scholar

Bhadani K., Asbjörnsson G., Hulthén T., Evertsson M., 2018 Application of multi-disciplinary optimization architectures in mineral processing simulations Minerals Engineering. 128, Nov. Р. 27−35 Search in Google Scholar

Yu J., Han Y., Li Y., Gao P., 2018 Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation Journal Mining and Metallurgy, Section B: Metallurgy. V. 54. No. 1. P. 21–27 Search in Google Scholar

Koltun P., Klymenko V., 2020 Cradle-to-gate life cycle assessment of the production of separated mix of rare earth oxides based on Australian production route. Mining of Mineral Deposits, 14(2), 1-15. https://doi.org/10.33271/mining14.02.001 Search in Google Scholar

Azarian V., Lutsenko S., Zhukov S., Skachkov A., Zaiarskyi R., Titov D., 2020 Applied scientific and systemic problems of the related ore-dressing plants interaction in the event of decommissioning the massif that separates their quarries. Mining of Mineral Deposits, 14(1), 1-10 https://doi.org/10.33271/mining14.01.001. Search in Google Scholar

Torsky A., Volnenko A., Plyatsuk L., Hurets L., Zhumadullayev D., Abzhabparov А., 2021 Study of dust collection effectiveness in cyclonic-vortex action apparatus. Technology Audit and Production Reserves, 1(3(57), 21–25. https://doi.org/10.15587/2706-5448.2021.225328 Search in Google Scholar

Karmazin V.I., Karmazin V.V., 1978 Magnitnye metody obogashcheniya. Moscow: Nedra, 255 p. (in russian) Search in Google Scholar

Mulyavko V.I., Oleinik T.A., Lyashenko V.I. et al., 2014 New technologies and technical means for separation of weakly magnetic ores. Obogashchenie rud, no. 2, pp. 43–49. (in russian) Search in Google Scholar

Mulyavko V.I., Oleinik T.A., Lyashenko V.I., 2017 Increase the efficiency of the operation of vertical sediment chambers for the utilization of metallurgical dust. Izvestiya VUZov. Chernaya metallurgiya, no. 4, pp. 276–284. (in russian) Search in Google Scholar

Aliev G.M.-A., 1986 Tekhnika pyleulavlivaniya i ochistki promyshlennykh gazov. Moscow: Metallurgiya, 544 p. (in russian) Search in Google Scholar

Gurman M.A., Shcherbak L.I., Aleksandrova T.N., 2010 Investigation of the enrichment of the poor iron ores. Gornyi informatsionno-analiticheskii byulleten’, no. 4, pp. 289–297. (in russian) Search in Google Scholar

Рershina A.V., Romashev A.O., 2015 Influence of Physical Properties of Iron-Iron Pulps and Geometric Parameters of Hydrocyclone on Performance Indicators of Hydro-Cyclone Operation. Gornyi informatsionno-analiticheskii byulleten’, no. S12, pp. 3–9. (in russian) Search in Google Scholar

Yushina T.I., Petrov I.M., Avdeev G.I., Valavin V.S., 2015 Analysis of the current state of mining and processing of iron ores and iron ore raw materials in the Russian Federation. Gornyi zhurnal, no. 1, pp. 41–47. (in russian) Search in Google Scholar

Shcherbakov A.V., Opalev A.S., 2015 Development and introduction of energy-saving ferruginous quartzite processing technology at OLKON. Trudy Kol’skogo nauchnogo tsentra RAN, no. 3 (29), pp. 176–184. (in russian) Search in Google Scholar

Oleinik T.A., Mulyavko V.I., Lyashenko V.I., Oleinik M.O., Bondurivskaya O.I., 2015 Development of technologies and technical means for beneficiation of titanium-containing ores FGUP "GIPROTSVETMET". Non-ferrous metallurgy - No. 3.- C.7-14 (in russian) Search in Google Scholar

Kalyuzhnaya R.V., 2016 Analysis of magnetic field effect on properties of liquefied ferromagnetic suspension during magnetic gravity separation. Gornyi informatsionno-analiticheskii byulleten’, no. 7, pp. 392–402. (in russian) Search in Google Scholar

Mulyavko V.I., Oleinik T.A., Lyashenko V.I., 2018 New technologies and technical means for dry dust extraction during processing of iron ore. Gornyi zhurnal, no. 2, pp. 78–84. (in russian) Search in Google Scholar

Tagunov E.Ya., Izmalkov V.A., Puchkov V.A., Diev D.N., 2019 Features of constructing polygradient matrices for high-gradient separators with superconducting magnetic systems. Gornyi informatsionno-analiticheskii byulleten’, no. 9, pp. 102–114. Doi: 10.25018/0236-1493-2019-09-0-102-114. (in russian) Search in Google Scholar

Oleinik T.A., Mulyavko V.I., Lyashenko V.I., 2020 Development and implementation of new generation cyclone facilities to improve efficiency of iron ore beneficiation and dust collection during its processing. Chernaya metallurgiya. Byulleten’ nauchno-tekhnicheskoi i ekonomicheskoi informatsii = Ferrous metallurgy. Bulletin of scientific, technical and economic information, vol. 76, no. 12, pp. 1209-1218 (in russian). Doi: 10.32339/0135-5910-1209-1218. 2020-12-1209-1218. Search in Google Scholar

Pelevin A.E., 2020 Production of hematite concentrate from hematite–magnetite ore. MIAB. Mining Inf. Anal. Bull. 2020;(3-1):422-430. (in russian). DOI: 10.25018/0236-1493-2020-31-0-422-430 Search in Google Scholar

Vishniakov A.V., Fedorov Iu.O., Chikin A.Iu., 2021 Improving the technology of manganese ore X-ray radiometric separation. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal = News of the Higher Institutions. Mining Journal. 2: 79–87 (in russian). DOI: 10.21440/0536-1028-2021-2-79-87 Search in Google Scholar

Lyashenko V., Dudar T., Stus V., Oliynik T., 2024 Natural Resource Management and Environmental Protection in Mining and Processing of Minerals Annual of the University of Mining and Geology “St. Ivan Rilski”, Vol. 67/2024. 55-64. https://mgu.bg/wp-content//uploads/2024/09/Годишник-на-МГУ-2024.pdf. Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, Engineering, other, Geosciences, Geosciences, other