Open Access

Analysis of spatio-temporal development of mining landforms using aerial photographs: Case study from the Ostrava–Karviná mining district

 and   
Oct 06, 2024

Cite
Download Cover

Blachowski, J. (2016). Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: case study of the Walbrzych coal mine (SW Poland). Natural Hazards, 84, 997–1014. https://doi.org/10.1007/s11069-016-2470-2 Search in Google Scholar

Brandolini, P., Mandarino, A., Paliaga, G., & Faccini, F. (2021). Anthropogenic landforms in an urbanized alluvial-coastal plain (Rapallo city, Italy). Journal of Maps, 17(4), 86–97. https://doi.org/10.1080/17445647.2020.1793818 Search in Google Scholar

Chirico, P. G., Bergstresser, S. E., Dewitt, J. D., & Alessi, M. A. (2021). Geomorphological mapping and anthropogenic landform change in an urbanizing watershed using structure-from-motion photogrammetry and geospatial modeling techniques. Journal of Maps, 17(4), 241–252. https://doi.org/10.1080/17445647.2020.1746419 Search in Google Scholar

Dávid, L. (2008). Quarrying: an anthropogenic geomorphological approach. Acta Montanistica Slovaca, 13(1), 66–74. Search in Google Scholar

Doležalová, H., Kajzar, V., Souček, K., & Staš, L. (2009). Evaluation of mining subsidence using GPS data. Acta Geodynamica et Geomaterialia, 6(3), 359–367. Search in Google Scholar

Doležalová, H., Kajzar, V., Souček, K., & Staš, L. (2012). Analysis of surface movements from undermining in time. Acta Geodynamica et Geomaterialia, 9(3), 389–400. Search in Google Scholar

Drlík, R. (1960). Ostravské haldy. Uhlí. Technicko-ekonomický měsíčník ministerstva paliv, 2(3), 85–87. Search in Google Scholar

Drlík, R. (1964). Ostravskokarvinský revír bez hald. Sborník k dějinám a výstavbě města, 2, 151–155. Search in Google Scholar

Dulias, R. (2016). The Impact of Mining on the Landscape. Springer. https://doi.org/10.1007/978-3-319-29541-1 Search in Google Scholar

Gerlich, V. (1973). Problematika asanačně rekultivačních prací OKR. 12 str. strojopisu. Archív GÚ ČSAV Brno. Search in Google Scholar

Harnischmacher, S. (2007). Anthropogenic impacts in the Ruhr District (Germany): A contribution to anthropogeomorphology in a former mining region. Geografia Fisica e Dinamica Quaternaria, 30(2), 185–192. Search in Google Scholar

Havrlant, J. (1997a). The Consequences of Coal Mining in the Natural Environment of the Karviná region. Acta Universitatis Carolinae – Geographica, 32, 71–78. Search in Google Scholar

Havrlant, J. (1997b). Hornictví a jeho trvalé následky v poddolované karvinské části Ostravské pánve. Geografie. Sborník ČGS, 102, 279–287. https://doi.org/10.37040/geografie1997102040279 Search in Google Scholar

Havrlant, J. (1999). Negative Influences of Coal Extraction in the Mining areas of the Karviná region. Moravian geograpical reports, 7, 56–60. Search in Google Scholar

Havrlant, M. (1967). Dosavadní biogeografický výzkum hald v OKR. Sborník prací Pedagogické fakulty v Ostravě 7. Řada C-2, 3–26. Search in Google Scholar

Havrlant, M. (1980). Antropogenní formy reliéfu a životní prostředí Ostravské průmyslové oblasti. Spisy Pedagogické fakulty v Ostravě, 41. Search in Google Scholar

Havrlant, M., Kincl, M., & Gerlich, V. (1967). Přírodní podmínky a současný stav vegetačního krytu na černouhelných haldách Ostravsko-karvinského revíru. Státní pedagogické nakladatelství. Spisy Pedagogické fakulty v Ostravě, 7. Search in Google Scholar

Henselowsky, F., Rölkens, J., Kelterbaum, D., & Bubenzer, O. (2021). Anthropogenic relief changes in a long-lasting lignite mining area (‘Ville’, Germany) derived from historic maps and digital elevation models. Earth Surface Processes and Landforms, 46, 1725–1738. https://doi.org/10.1002/esp.5103 Search in Google Scholar

Hlavatá, M., Dirner, V., & Kučerová, R. (2012). Zhodnocení uhelných kalů z odkališť v ostravsko-karvinském revíru. Životné prostredie, 46(5), 254–257. Search in Google Scholar

Ikemi, H. (2017). Geologically constrained changes to landforms caused by human activities in the 20th century: A case study from Fukuoka Prefecture, Japan. Applied Geography, 87, 115–126. https://doi.org/10.1016/j.apgeog.2017.08.001 Search in Google Scholar

Jancewicz, K., Traczyk, A., & Migoñ, P. (2020). Landform modifications within an intramontane urban landscape due to industrial activity, Wałbrzych, SW Poland. Journal of Maps, 17 (4), 194–201. https://doi.org/10.1080/17445647.2020.1805805 Search in Google Scholar

Jensen, J. R. (2007). Remote Sensing of the Environment. An Earth Resource Perspective. Pearson Education. Search in Google Scholar

Kadlečík, P., Kajzar, V., Nekvasilová, Z., Wegmüller, U., & Doležalová, H. (2015). Evaluation of the subsidence based on DInSAR and GPS measurements near Karviná, Czech Republic. Acta Universitatis Carolinae Geographica, 50(1), 51–61. https://doi.org/10.14712/23361980.2015.86 Search in Google Scholar

Kirchner, K., & Smolová, I. (2010). Základy antropogenní geomorfologie. Univerzita Palackého v Olomouci. Search in Google Scholar

Kroutilík, V. (1954). Haldové pokryvy na území města Ostravy. Přírodovědecký sborník Ostravského kraje. Slezský studijní ústav. Search in Google Scholar

Lausch, A., & Herzog, F. (2002). Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5 Search in Google Scholar

Lei, M., Qi-yan, F., Lai, Z., Ping, L., & Quin-jun, M. (2009). Environmental cumulative effects of coal underground mining. Procedia Earth and Planetary Science, 1, 1280–1284. https://doi.org/10.1016/j. Search in Google Scholar

Luberti, G. M., & Del Monte, M. (2020). Landscapes and landforms connected with anthropogenic processes over three millennia: The Servian Walls at the Esquiline Hill (Rome, Italy). The Holocene 30(12), 1817–1832. https://doi.org/10.1177/0959683620950460 Search in Google Scholar

Machač, J., & Langrová, P. (2003). Uhelné hornictví v ostravsko-karvinském revíru. Anagram. Search in Google Scholar

Mandarino, A., Faccini, F., Terrone, M., & Paliaga, G. (2021). Anthropogenic landforms and geo-hydrological hazards of the Bisagno Stream catchment (Liguria, Italy). Journal of Maps, 17(3), 122–135. https://doi.org/10.1080/17445647.2020.1866704 Search in Google Scholar

Martinec, P., Honěk, J., Beňák, P., Cyroň, J., Hoňková, K., Machalínek, M., …, & Zamarský, V. (2006). Termination of underground coal mining and its impact on the environment. Anagram. Search in Google Scholar

Martinec, P., Hortvík, K., Latová, A., Maníček, J., Krůl, M., Schejbalová, B., …, & Vojvodíková, B. (2003). Atlas map vlivu útlumu hlubinné těžby černého uhlí v české části Hornoslezské pánve na povrch a životní prostředí. Akademie věd ČR, Ústav geoniky Ostrava, 109 p. Search in Google Scholar

Migoñ, P., & Latocha, A. (2017). Human impact and geomorphic change through time in the Sudetes, Central Europe. Quaternary International, 470, 194–206. https://doi.org/10.1016/j.quaint.2018.01.038 Search in Google Scholar

Mikulík, O., Havrlant, M., Hrádek, M., Ides, D., Kallabová, E., Kirchner, K., …, & Zapletalová, J. (2004). Soubor map vlivu útlumu hlubinné těžby černého uhlí na krajinu a životní prostředí Ostravska. Documenta Geonica 1/2004. Akademie věd České republiky, Ústav geoniky – pobočka Brno. Search in Google Scholar

Mossa, J., Chen, Y., Walls, S. P., Kondolf, M., & Wu, C. (2017). Anthropogenic landforms and sediments from dredging and disposing sand along the Apalachicola River and its floodplain. Geomorphology, 294, 119–134. https://doi.org/10.1016/j.geomorph.2017.03.010 Search in Google Scholar

Mulková, M., & Popelková, R. (2013). Displays of hard coal deep mining in aerial photos. Acta Universitatis Carolinae Geographica, 48(1), 25–39. https://doi.org/10.14712/23361980.2015.8 Search in Google Scholar

Ninfo, A., Mozzi, P., & Abba, T. (2016). Integration of LiDAR and cropmark remote sensing for the study of fluvial and anthropogenic landforms in the Brenta–Bacchiglione alluvial plain (NE Italy). Geomorphology, 260, 64–78. https://doi.org/doi:10.1016/j.geomorph.2015.11.006 Search in Google Scholar

Popelka, P. (2013). Nová krajina. Počátky rekultivace krajiny ostravskokarvinského revíru (do konce 60. let 20. století). Časopis Matice moravské, 132, 445–476. Search in Google Scholar

Popelka, P., Popelková, R., & Mulková, M. (2016). Black or Green Land? Industrialisation and Landscape Changes of the Ostrava-Karviná Mining District in the 19th and 20th Century. Ostravská univerzita, Ostrava. Search in Google Scholar

Popelková, R., & Mulková, M. (2016). Multitemporal aerial image analysis for the monitoring of the processes in the landscape affected by deep coal mining. European Journal of Remote Sensing, 49(1), 973–1009. https://doi.org/10.5721/EuJRS20164951 Search in Google Scholar

Popelková, R., & Mulková, M. (2018). The mining landscape of the Ostrava-Karviná coalfield: Processes of landscape change from the 1830s to the beginning of the 21st century. Applied Geography, 90, 28–43. https://doi.org/10.1016/j.apgeog.2017.11.008 Search in Google Scholar

Quanyuan, W., Jiewu, P., Shanzhong, Q., Yiping L., Congcong H., Tingxiang L., & Limei H. (2009). Impacts of coal mining subsidence on the surface landscape in Longkou city, Shandong Province of China. Environmental Earth Sciences, 59, 783–791. https://doi.org/10.1007/s12665-009-0074-9 Search in Google Scholar

Raclavský, K. (2004). Environmentální problémy hornické a průmyslové krajiny. https://www.hgf.vsb.cz/546/cs/veda-a-vyzkum/vedecko-vyzkumneprojekty/?projectDetailId=30230&fromPage=/546/cs/veda-a-vyzkum/vedecko-vyzkumne-projekty/index.html. Search in Google Scholar

Raucoules, D., Maisons, C., Carnec, C., Le Mouelic, S., King, C., & Hosford, S. (2003). Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France). Comparison with groundbased measurement. Remote Sensing of Environment, 88, 468–478. https://doi.org/10.1016/j.rse.2003.09.005 Search in Google Scholar

Rzętała, M., & Jaguś, A. (2012). New lake district in Europe: origin and hydrochemical characteristics. Water and Environment Journal, 26(1), 108–112. https://doi.org/10.1111/j.1747-6593.2011.00269.x Search in Google Scholar

Santo, E. L., & Sánchez, L. E. (2002). GIS applied to determine environmental impact indicators made by sand mining in a floodplain in southeaster Brazil. Environmental Geology, 41(6), 628–637. https://doi.org/10.1007/s002540100441 Search in Google Scholar

Sasaoka, T., Takamoto, H., Shimada, H., Oya, J., Hamanaka, A., & Matsui, K. (2015) Surface subsidence due to underground mining operation under weak geological condition in Indonesia. Journal of Rock Mechanics and Geotechnical Engineering, 7, 337–344. https://doi.org/10.1016/j.jrmge.2015.01.007 Search in Google Scholar

Stalmachová, B. (2004). Iniciace přirozených ekosystémů poddolované krajiny pro proces obnovy území Karvinska. https://www.isvavai.cz/cep?ss=detail&h=SE%2F640%2F1%2F01 Search in Google Scholar

Szabó, J., Dávid L., & Lóczy, D. (2010). Anthropogenic geomorphology: a guide to man-made landforms. Springer. https://doi.org/10.1007/978-90-481-3058-0 Search in Google Scholar

Sklenička, P., & Lhota, T. (2002). Landscape heterogenity – a quantitative criterion for landscape reconstruction. Landscape and Urban Planning, 58(2–4), 147–156. https://doi.org/10.1016/S0169-2046(01)00217-1 Search in Google Scholar

Szypuła, B. (2013). Spatial distribution and statistic analysis of the anthropogenic line forms on the different basic fields. Environmental & Socio-economic Studies, 1(2), 1–14. https://doi.org/10.1515/environ-2015-0007 Search in Google Scholar

Szypuła, D. (2020). Digital adaptation of the Geomorphological Map of Upper Silesian Industrial Region, Poland (1:50,000) – old map new possibilities. Journal of Maps, 16(2), 614–624. https://doi.org/10.1080/17445647.2020.1800528 Search in Google Scholar

Ursu, A., Chelaru, D. A., Mihai, F. C., & Iordache, I. (2011). Anthropogenic Landform Modeling Using GIS Techniques Case Study: Vrancea Region. Geographia Technica, 13(1), 91–100. https://doi.org/10.5281/zenodo.19144 Search in Google Scholar

Waga, J. M., Szypula, B., Sendobry, K., & Fajer, M. (2022). Anthropogenic Landforms Derived from LiDAR Data in the Woodlands near Kotlarnia (Koźle Basin, Poland). Sensors, 22(21), 8328–8343. https://doi.org/10.3390/s22218328 Search in Google Scholar

Zástěrová, P., Marschalko, M., Durďák, J., & Niemec, D. (2015). Nature conditions of Waste Dumps in the Czech Part of the Upper Silesian Coal Basin. Procedia Earth and Planetary Science, 15, 395–400. https://doi.org/10.1016/j.proeps.2015.08.013 Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Business and Economics, Business Management, Industries, Environmental Management, Geosciences, Geography