[
Blachowski, J. (2016). Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: case study of the Walbrzych coal mine (SW Poland). Natural Hazards, 84, 997–1014. https://doi.org/10.1007/s11069-016-2470-2
]Search in Google Scholar
[
Brandolini, P., Mandarino, A., Paliaga, G., & Faccini, F. (2021). Anthropogenic landforms in an urbanized alluvial-coastal plain (Rapallo city, Italy). Journal of Maps, 17(4), 86–97. https://doi.org/10.1080/17445647.2020.1793818
]Search in Google Scholar
[
Chirico, P. G., Bergstresser, S. E., Dewitt, J. D., & Alessi, M. A. (2021). Geomorphological mapping and anthropogenic landform change in an urbanizing watershed using structure-from-motion photogrammetry and geospatial modeling techniques. Journal of Maps, 17(4), 241–252. https://doi.org/10.1080/17445647.2020.1746419
]Search in Google Scholar
[
Dávid, L. (2008). Quarrying: an anthropogenic geomorphological approach. Acta Montanistica Slovaca, 13(1), 66–74.
]Search in Google Scholar
[
Doležalová, H., Kajzar, V., Souček, K., & Staš, L. (2009). Evaluation of mining subsidence using GPS data. Acta Geodynamica et Geomaterialia, 6(3), 359–367.
]Search in Google Scholar
[
Doležalová, H., Kajzar, V., Souček, K., & Staš, L. (2012). Analysis of surface movements from undermining in time. Acta Geodynamica et Geomaterialia, 9(3), 389–400.
]Search in Google Scholar
[
Drlík, R. (1960). Ostravské haldy. Uhlí. Technicko-ekonomický měsíčník ministerstva paliv, 2(3), 85–87.
]Search in Google Scholar
[
Drlík, R. (1964). Ostravskokarvinský revír bez hald. Sborník k dějinám a výstavbě města, 2, 151–155.
]Search in Google Scholar
[
Dulias, R. (2016). The Impact of Mining on the Landscape. Springer. https://doi.org/10.1007/978-3-319-29541-1
]Search in Google Scholar
[
Gerlich, V. (1973). Problematika asanačně rekultivačních prací OKR. 12 str. strojopisu. Archív GÚ ČSAV Brno.
]Search in Google Scholar
[
Harnischmacher, S. (2007). Anthropogenic impacts in the Ruhr District (Germany): A contribution to anthropogeomorphology in a former mining region. Geografia Fisica e Dinamica Quaternaria, 30(2), 185–192.
]Search in Google Scholar
[
Havrlant, J. (1997a). The Consequences of Coal Mining in the Natural Environment of the Karviná region. Acta Universitatis Carolinae – Geographica, 32, 71–78.
]Search in Google Scholar
[
Havrlant, J. (1997b). Hornictví a jeho trvalé následky v poddolované karvinské části Ostravské pánve. Geografie. Sborník ČGS, 102, 279–287. https://doi.org/10.37040/geografie1997102040279
]Search in Google Scholar
[
Havrlant, J. (1999). Negative Influences of Coal Extraction in the Mining areas of the Karviná region. Moravian geograpical reports, 7, 56–60.
]Search in Google Scholar
[
Havrlant, M. (1967). Dosavadní biogeografický výzkum hald v OKR. Sborník prací Pedagogické fakulty v Ostravě 7. Řada C-2, 3–26.
]Search in Google Scholar
[
Havrlant, M. (1980). Antropogenní formy reliéfu a životní prostředí Ostravské průmyslové oblasti. Spisy Pedagogické fakulty v Ostravě, 41.
]Search in Google Scholar
[
Havrlant, M., Kincl, M., & Gerlich, V. (1967). Přírodní podmínky a současný stav vegetačního krytu na černouhelných haldách Ostravsko-karvinského revíru. Státní pedagogické nakladatelství. Spisy Pedagogické fakulty v Ostravě, 7.
]Search in Google Scholar
[
Henselowsky, F., Rölkens, J., Kelterbaum, D., & Bubenzer, O. (2021). Anthropogenic relief changes in a long-lasting lignite mining area (‘Ville’, Germany) derived from historic maps and digital elevation models. Earth Surface Processes and Landforms, 46, 1725–1738. https://doi.org/10.1002/esp.5103
]Search in Google Scholar
[
Hlavatá, M., Dirner, V., & Kučerová, R. (2012). Zhodnocení uhelných kalů z odkališť v ostravsko-karvinském revíru. Životné prostredie, 46(5), 254–257.
]Search in Google Scholar
[
Ikemi, H. (2017). Geologically constrained changes to landforms caused by human activities in the 20th century: A case study from Fukuoka Prefecture, Japan. Applied Geography, 87, 115–126. https://doi.org/10.1016/j.apgeog.2017.08.001
]Search in Google Scholar
[
Jancewicz, K., Traczyk, A., & Migoñ, P. (2020). Landform modifications within an intramontane urban landscape due to industrial activity, Wałbrzych, SW Poland. Journal of Maps, 17 (4), 194–201. https://doi.org/10.1080/17445647.2020.1805805
]Search in Google Scholar
[
Jensen, J. R. (2007). Remote Sensing of the Environment. An Earth Resource Perspective. Pearson Education.
]Search in Google Scholar
[
Kadlečík, P., Kajzar, V., Nekvasilová, Z., Wegmüller, U., & Doležalová, H. (2015). Evaluation of the subsidence based on DInSAR and GPS measurements near Karviná, Czech Republic. Acta Universitatis Carolinae Geographica, 50(1), 51–61. https://doi.org/10.14712/23361980.2015.86
]Search in Google Scholar
[
Kirchner, K., & Smolová, I. (2010). Základy antropogenní geomorfologie. Univerzita Palackého v Olomouci.
]Search in Google Scholar
[
Kroutilík, V. (1954). Haldové pokryvy na území města Ostravy. Přírodovědecký sborník Ostravského kraje. Slezský studijní ústav.
]Search in Google Scholar
[
Lausch, A., & Herzog, F. (2002). Applicability of landscape metrics for the monitoring of landscape change: issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5
]Search in Google Scholar
[
Lei, M., Qi-yan, F., Lai, Z., Ping, L., & Quin-jun, M. (2009). Environmental cumulative effects of coal underground mining. Procedia Earth and Planetary Science, 1, 1280–1284. https://doi.org/10.1016/j.
]Search in Google Scholar
[
Luberti, G. M., & Del Monte, M. (2020). Landscapes and landforms connected with anthropogenic processes over three millennia: The Servian Walls at the Esquiline Hill (Rome, Italy). The Holocene 30(12), 1817–1832. https://doi.org/10.1177/0959683620950460
]Search in Google Scholar
[
Machač, J., & Langrová, P. (2003). Uhelné hornictví v ostravsko-karvinském revíru. Anagram.
]Search in Google Scholar
[
Mandarino, A., Faccini, F., Terrone, M., & Paliaga, G. (2021). Anthropogenic landforms and geo-hydrological hazards of the Bisagno Stream catchment (Liguria, Italy). Journal of Maps, 17(3), 122–135. https://doi.org/10.1080/17445647.2020.1866704
]Search in Google Scholar
[
Martinec, P., Honěk, J., Beňák, P., Cyroň, J., Hoňková, K., Machalínek, M., …, & Zamarský, V. (2006). Termination of underground coal mining and its impact on the environment. Anagram.
]Search in Google Scholar
[
Martinec, P., Hortvík, K., Latová, A., Maníček, J., Krůl, M., Schejbalová, B., …, & Vojvodíková, B. (2003). Atlas map vlivu útlumu hlubinné těžby černého uhlí v české části Hornoslezské pánve na povrch a životní prostředí. Akademie věd ČR, Ústav geoniky Ostrava, 109 p.
]Search in Google Scholar
[
Migoñ, P., & Latocha, A. (2017). Human impact and geomorphic change through time in the Sudetes, Central Europe. Quaternary International, 470, 194–206. https://doi.org/10.1016/j.quaint.2018.01.038
]Search in Google Scholar
[
Mikulík, O., Havrlant, M., Hrádek, M., Ides, D., Kallabová, E., Kirchner, K., …, & Zapletalová, J. (2004). Soubor map vlivu útlumu hlubinné těžby černého uhlí na krajinu a životní prostředí Ostravska. Documenta Geonica 1/2004. Akademie věd České republiky, Ústav geoniky – pobočka Brno.
]Search in Google Scholar
[
Mossa, J., Chen, Y., Walls, S. P., Kondolf, M., & Wu, C. (2017). Anthropogenic landforms and sediments from dredging and disposing sand along the Apalachicola River and its floodplain. Geomorphology, 294, 119–134. https://doi.org/10.1016/j.geomorph.2017.03.010
]Search in Google Scholar
[
Mulková, M., & Popelková, R. (2013). Displays of hard coal deep mining in aerial photos. Acta Universitatis Carolinae Geographica, 48(1), 25–39. https://doi.org/10.14712/23361980.2015.8
]Search in Google Scholar
[
Ninfo, A., Mozzi, P., & Abba, T. (2016). Integration of LiDAR and cropmark remote sensing for the study of fluvial and anthropogenic landforms in the Brenta–Bacchiglione alluvial plain (NE Italy). Geomorphology, 260, 64–78. https://doi.org/doi:10.1016/j.geomorph.2015.11.006
]Search in Google Scholar
[
Popelka, P. (2013). Nová krajina. Počátky rekultivace krajiny ostravskokarvinského revíru (do konce 60. let 20. století). Časopis Matice moravské, 132, 445–476.
]Search in Google Scholar
[
Popelka, P., Popelková, R., & Mulková, M. (2016). Black or Green Land? Industrialisation and Landscape Changes of the Ostrava-Karviná Mining District in the 19th and 20th Century. Ostravská univerzita, Ostrava.
]Search in Google Scholar
[
Popelková, R., & Mulková, M. (2016). Multitemporal aerial image analysis for the monitoring of the processes in the landscape affected by deep coal mining. European Journal of Remote Sensing, 49(1), 973–1009. https://doi.org/10.5721/EuJRS20164951
]Search in Google Scholar
[
Popelková, R., & Mulková, M. (2018). The mining landscape of the Ostrava-Karviná coalfield: Processes of landscape change from the 1830s to the beginning of the 21st century. Applied Geography, 90, 28–43. https://doi.org/10.1016/j.apgeog.2017.11.008
]Search in Google Scholar
[
Quanyuan, W., Jiewu, P., Shanzhong, Q., Yiping L., Congcong H., Tingxiang L., & Limei H. (2009). Impacts of coal mining subsidence on the surface landscape in Longkou city, Shandong Province of China. Environmental Earth Sciences, 59, 783–791. https://doi.org/10.1007/s12665-009-0074-9
]Search in Google Scholar
[
Raclavský, K. (2004). Environmentální problémy hornické a průmyslové krajiny. https://www.hgf.vsb.cz/546/cs/veda-a-vyzkum/vedecko-vyzkumneprojekty/?projectDetailId=30230&fromPage=/546/cs/veda-a-vyzkum/vedecko-vyzkumne-projekty/index.html.
]Search in Google Scholar
[
Raucoules, D., Maisons, C., Carnec, C., Le Mouelic, S., King, C., & Hosford, S. (2003). Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France). Comparison with groundbased measurement. Remote Sensing of Environment, 88, 468–478. https://doi.org/10.1016/j.rse.2003.09.005
]Search in Google Scholar
[
Rzętała, M., & Jaguś, A. (2012). New lake district in Europe: origin and hydrochemical characteristics. Water and Environment Journal, 26(1), 108–112. https://doi.org/10.1111/j.1747-6593.2011.00269.x
]Search in Google Scholar
[
Santo, E. L., & Sánchez, L. E. (2002). GIS applied to determine environmental impact indicators made by sand mining in a floodplain in southeaster Brazil. Environmental Geology, 41(6), 628–637. https://doi.org/10.1007/s002540100441
]Search in Google Scholar
[
Sasaoka, T., Takamoto, H., Shimada, H., Oya, J., Hamanaka, A., & Matsui, K. (2015) Surface subsidence due to underground mining operation under weak geological condition in Indonesia. Journal of Rock Mechanics and Geotechnical Engineering, 7, 337–344. https://doi.org/10.1016/j.jrmge.2015.01.007
]Search in Google Scholar
[
Stalmachová, B. (2004). Iniciace přirozených ekosystémů poddolované krajiny pro proces obnovy území Karvinska. https://www.isvavai.cz/cep?ss=detail&h=SE%2F640%2F1%2F01
]Search in Google Scholar
[
Szabó, J., Dávid L., & Lóczy, D. (2010). Anthropogenic geomorphology: a guide to man-made landforms. Springer. https://doi.org/10.1007/978-90-481-3058-0
]Search in Google Scholar
[
Sklenička, P., & Lhota, T. (2002). Landscape heterogenity – a quantitative criterion for landscape reconstruction. Landscape and Urban Planning, 58(2–4), 147–156. https://doi.org/10.1016/S0169-2046(01)00217-1
]Search in Google Scholar
[
Szypuła, B. (2013). Spatial distribution and statistic analysis of the anthropogenic line forms on the different basic fields. Environmental & Socio-economic Studies, 1(2), 1–14. https://doi.org/10.1515/environ-2015-0007
]Search in Google Scholar
[
Szypuła, D. (2020). Digital adaptation of the Geomorphological Map of Upper Silesian Industrial Region, Poland (1:50,000) – old map new possibilities. Journal of Maps, 16(2), 614–624. https://doi.org/10.1080/17445647.2020.1800528
]Search in Google Scholar
[
Ursu, A., Chelaru, D. A., Mihai, F. C., & Iordache, I. (2011). Anthropogenic Landform Modeling Using GIS Techniques Case Study: Vrancea Region. Geographia Technica, 13(1), 91–100. https://doi.org/10.5281/zenodo.19144
]Search in Google Scholar
[
Waga, J. M., Szypula, B., Sendobry, K., & Fajer, M. (2022). Anthropogenic Landforms Derived from LiDAR Data in the Woodlands near Kotlarnia (Koźle Basin, Poland). Sensors, 22(21), 8328–8343. https://doi.org/10.3390/s22218328
]Search in Google Scholar
[
Zástěrová, P., Marschalko, M., Durďák, J., & Niemec, D. (2015). Nature conditions of Waste Dumps in the Czech Part of the Upper Silesian Coal Basin. Procedia Earth and Planetary Science, 15, 395–400. https://doi.org/10.1016/j.proeps.2015.08.013
]Search in Google Scholar