Open Access

The Effect of Alkaline Water and Sodium Ascorbate on Glucose and Cortisol Levels During Acute Hyperthermic Stress in White Laboratory Rats


Cite

1. Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., et al. (1997). Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun. 234, 269-274. https://doi.org/10.1006/bbrc.1997.6622 PMid:916900110.1006/bbrc.1997.66229169001 Search in Google Scholar

2. Kashiwagi, T., Hamasaki, T., Kabayama, S., Takaki, M., Teruya, K., Katakura, Y., et al. (2005). Suppression of oxidative stress-induced apoptosis of neuronal cells by electrolyzed reduced water. In: Gòdia F., Fussenegger M. (Eds.), Animal cell technology meets genomics. ESACT Proceedings, Vol 2. (pp. 257-259). Dordrecht: Springer https://doi.org/10.1007/1-4020-3103-3_5010.1007/1-4020-3103-3_50 Search in Google Scholar

3. Watanabe, T. (1995). Effect of alkaline ionized water on reproduction in gestational and lactational rats. J Toxicol Sci. 20, 135-142. https://doi.org/10.2131/jts.20.135 PMid:747389110.2131/jts.20.1357473891 Search in Google Scholar

4. Hanaoka, K. (2001). Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions. J Appl Electrochem. 31, 1307-1313. https://doi.org/10.1023/A:101382500970110.1023/A:1013825009701 Search in Google Scholar

5. Oda, M., Kusumoto, K., Teruya, K., Hara, T., Maki, S., Kabayama, S., et al. (1999). Electrolyzed and natural reduced water exhibit insulin-like activity on glucose uptake into muscle cells and adipocytes. In: A. Bernard, B. Griffiths, W. Noe, F. Wurm (Eds.), Animal cell technology: Products from cells, cells as products. (pp. 425-427). Dordrecht: Kluwer Academic Publishers https://doi.org/10.1007/0-306-46875-1_9010.1007/0-306-46875-1_90 Search in Google Scholar

6. Kim, J.M., Yokoyama, K. (1997). Effects of alkaline ionized water on spontaneously diabetic GK-rats fed sucrose. Korean J Lab Anim Sci. 13, 187-190. Search in Google Scholar

7. Watanabe, T., Kishikawa, Y., Shirai, W. (1997). Influence of alkaline ionized water on rat erythrocyte hexokinase activity and myocardium. J Toxicol Sci. 22, 141-152. https://doi.org/10.2131/jts.22.2_141 PMid:919801110.2131/jts.22.2_1419198011 Search in Google Scholar

8. Li, Y.P., Nishimura, T., Teruya, K., Maki, T., Komatsu, T., Hamasaki, T., et al. (2002). Protective mechanism of reduced water against alloxan-induced pancreatic β-cell damage: scavenging effect against reactive oxygen species. Cytotechnology 40(1-3): 139-149. Search in Google Scholar

9. Li, Y.P., Teruya, K., Katakura, Y., Kabayama, S., Otsubo, K., Morisawa, S., et al. (2005). Effect of reduced water on the apoptotic cell death triggered by oxidative stress in pancreatic β HIT-T15 cell. In: Gòdia F., Fussenegger M. (Eds.), Animal cell technology meets genomics. ESACT Proceedings, Vol 2. (pp. 121-124). Dordrecht: Springer https://doi.org/10.1007/1-4020-3103-3_2110.1007/1-4020-3103-3_21 Search in Google Scholar

10. Li, Y.P., Hamasaki, T., Nakamichi, N., Kashiwagi, T., Komatsu, T., Ye, J., et al. (2011). Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 63(2): 119-131. https://doi.org/10.1007/s10616-010-9317-6 PMid:21063772 PMCid:PMC308047810.1007/s10616-010-9317-6308047821063772 Search in Google Scholar

11. Li, Y.P., Hamasaki, T., Teruya, K., Nakamichi, N., Gadek, Z., Kashiwagi, T., et al. (2012). Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 64, 281-297. https://doi.org/10.1007/s10616-011-9414-1 PMid:22143345 PMCid:PMC338638410.1007/s10616-011-9414-1338638422143345 Search in Google Scholar

12. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., et al. (2017). Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017, 8416763. https://doi.org/10.1155/2017/8416763 PMid:28819546 PMCid:PMC555154110.1155/2017/8416763555154128819546 Search in Google Scholar

13. Halliwel, B., Gutteridge, J.M.C. (1989). Free radicals in biology and medicine. New York: Oxford University Press Search in Google Scholar

14. Hall, D.M., Buettner, G.R., Matthes, R.D., Gisolfi, C.V. (1994). Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J Appl Physiol. 77, 548-553. https://doi.org/10.1152/jappl.1994.77.2.548 PMid:800249910.1152/jappl.1994.77.2.5488002499 Search in Google Scholar

15. Webb, A.L., Villamor, E. (2007). Update: Effects of antioxidant and non-antioxidant vitamin sup plementation on immune function. Nutr Rev. 65, 181. https://doi.org/10.1111/j.1753-4887.2007.tb00298.x PMid:1756654710.1111/j.1753-4887.2007.tb00298.x17566547 Search in Google Scholar

16. Khassaf, M., McArdle, A., Esanu, C., Vasilaki, A., McArdle, F., Griffiths, R.D., Jackson, M.J. (2003). Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol. 549(2): 645-652. https://doi.org/10.1113/jphysiol.2003.040303 PMid:12692182 PMCid:PMC234296110.1113/jphysiol.2003.040303234296112692182 Search in Google Scholar

17. Ardekani, M.A., Ardekani, A.S. (2007). Effect of vitamin C on blood glucose, serum lipids & serum insulin in type II diabetes patients. Indian J Med Res. 126(5): 471-474. Search in Google Scholar

18. Sargeant, L.A., Wareham, N.J., Bingham, S., Day, N.E., Luben, R.N., Oakes, S., Welch, A., Khaw, K.T. (2000). Vitamin C and hyperglycemia in the European prospective investigation into cancer-Norfolk (EPIC-Norfolk) study: a population based study. Diabetes Care 23(6): 726-732. https://doi.org/10.2337/diacare.23.6.726 PMid:1084098610.2337/diacare.23.6.72610840986 Search in Google Scholar

19. Bashaw, M.J., Sicks, F., Palme, R., Schwarzenberger, F., Tordiffe, A.S.W., Ganswindt, A. (2016). Noninvasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis). BMC Vet Res. 12, 235. https://doi.org/10.1186/s12917-016-0864-8 PMid:27756312 PMCid:PMC507001010.1186/s12917-016-0864-8507001027756312 Search in Google Scholar

20. Carnegie, S.D., Schoof, V.A., Jack, K.M. (2011). Rise to power: a case study of male fecal androgen and cortisol levels before and after a non-aggressive rank change in a group of wild white-faced capuchins (Cebus capucinus). Folia Primatol (Basel). 82(6): 299-307. https://doi.org/10.1159/000337220 PMid:2248835410.1159/00033722022488354 Search in Google Scholar

21. O'Connor, T.M., O'Halloran, D.J., Shanahan, F. (2000). The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM. 93, 323-333. https://doi.org/10.1093/qjmed/93.6.323 PMid:1087318110.1093/qjmed/93.6.32310873181 Search in Google Scholar

22. Aminkeng, F., Ross, C.J.D., Rassekh, S.R., Hwang, S., Rieder, M.J., Bhavsar, A.P., Smith, A., et al. (2016). Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 683-695. https://doi.org/10.1111/bcp.13008 PMid:27197003 PMCid:PMC533811110.1111/bcp.13008533811127197003 Search in Google Scholar

23. Lahiri, S., Lloyd, B.B. (1962). The form of vitamin C released by the rat adrenal. Biochem J. 84, 474-477. https://doi.org/10.1042/bj0840474 PMid:14461598 PMCid:PMC124369910.1042/bj0840474124369914461598 Search in Google Scholar

24. Lahiri, S., Lloyd, B.B. (1962). The effect of stress and corticotrophin on the concentrations of vitamin C in blood and tissues of the rat. Biochem J. 84, 478-483. https://doi.org/10.1042/bj0840478 PMid:14461597 PMCid:PMC124370010.1042/bj0840478124370014461597 Search in Google Scholar

25. Hooper, M.H., Carr, A., Marik, P.E. (2019). The adrenal-vitamin C axis: from fish to guinea pigs and primates. Crit Care. 23, 29. https://doi.org/10.1186/s13054-019-2332-x PMid:30691525 PMCid:PMC634860310.1186/s13054-019-2332-x Search in Google Scholar

26. Kajiyama, S., Hasegawa, G., Asano, M., Hosoda, H., Fukui, M., Nakamura, N., Adachi, T., et al. (2008). Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 28, 137-143. https://doi.org/10.1016/j.nutres.2008.01.008 PMid:1908340010.1016/j.nutres.2008.01.008 Search in Google Scholar

27. Mesallamy, H.E., Suwailem, S., Hamdy, N. (2007). Evaluation of C-reactive protein, endothelin-1, adhesion molecule(s), and lipids as inflammatory markers in type 2 diabetes mellitus patients. Mediators Inflamm. 2007, 73635. https://doi.org/10.1155/2007/73635 PMid:17497038 PMCid:PMC182061810.1155/2007/73635 Search in Google Scholar

28. Jin, D., Ryu, S.H., Kim, H.W., Yang, E.J., Lim, S.J., Ryang, Y.S., Chung, C.H., et al. (2006). Anti-diabetic effect of alkaline-reduced water on OLETF rats. Biosci Biotechnol Biochem. 70, 31-37. https://doi.org/10.1271/bbb.70.31 PMid:1642881810.1271/bbb.70.31 Search in Google Scholar

29. Kim, M.J., Kim, H.K. (2006). Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice. Life Sci. 79, 2288-2292. https://doi.org/10.1016/j.lfs.2006.07.027 PMid:1694539210.1016/j.lfs.2006.07.027 Search in Google Scholar

30. Sreemantula, S., Kilari, E.K., Vardhan, V.A., Jaladi, R. (2005). Influence of antioxidant (L-ascorbic acid) on tolbutamide-induced hy poglycaemia/ antihyperglycaemia in normal and diabetic rats. BMC Endocr Disord. 5, 2.https://doi.org/10.1186/1472-6823-5-2 PMid:15745442 PMCid:PMC55557110.1186/1472-6823-5-2 Search in Google Scholar

31. Jamieson, D.J. (1998). Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14(16): 1511-1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S Search in Google Scholar

32. Chmelíkováa, E., Bolechová, P., Chaloupková, H., Svobodová, I., Jovicic, M., Sedmíková, M. (2019). Salivary cortisol as a marker of acute stress in dogs: A review. Dom Anim Endocrinol. 72, 1-10. https://doi.org/10.1016/j.domaniend.2019.106428 PMid:3221343910.1016/j.domaniend.2019.106428 Search in Google Scholar

33. McCabe, D., Lisy, K., Lockwood, C., Colbeck, M. (2017). The impact of essential fatty acid, B vitamins, vitamin C, magnesium and zinc supplementation on stress levels in women: a systematic review. JBI Database System Rev Implement Rep. 2, 402-453. https://doi.org/10.11124/JBISRIR-2016-002965 PMid:2817802210.11124/JBISRIR-2016-002965 Search in Google Scholar

34. Haase, C.G., Long, A.K., James, G.F. (2016). Energetics of stress: linking plasma cortisol levels to metabolic rate in mammals. Biol Lett. 12(1): 20150867. https://doi.org/10.1098/rsbl.2015.0867 PMid:26740562 PMCid:PMC478592410.1098/rsbl.2015.0867 Search in Google Scholar

35. Fumeron, C., Nguyen-Khoa, T., Saltiel, C., Kebede, M., Buisson, C., Drüeke, T.B., et al. (2005). Effects of oral vitamin C supplementation on oxidative stress and inflammation status in haemodialysis patients. Nephrol Dial Transplant. 20(9): 1874-1879. https://doi.org/10.1093/ndt/gfh928 PMid:1597232210.1093/ndt/gfh928 Search in Google Scholar

36. Stone, I. (1979). Homo sapiens ascorbicus, a biochemically cor rected robust human mutant. Medical Hypotheses 5(6): 711-721. https://doi.org/10.1016/0306-9877(79)90093-810.1016/0306-9877(79)90093-8 Search in Google Scholar

eISSN:
1857-7415
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine