Cite

1. Moghaddam, R. R., Nategh, S., Islam, J., & Boglietti, A. (2020). Different traction motor topologies used in e-mobility: Part II: Magnet-based solutions. In 2020 International Conference on Electrical Machines (ICEM), (pp. 138–143). 23 August 2020, Gothenburg.10.1109/ICEM49940.2020.9270938 Search in Google Scholar

2. Hamidizadeh, S., Alatawneh, N., Chromik, R. R., & Lowther, D. A. (2016). Comparison of Different Demagnetization Models of Permanent Magnet in Machines for Electric Vehicle Application. IEEE Transactions on Magnetics, 52 (5), 1–4.10.1109/TMAG.2015.2513067 Search in Google Scholar

3. Jeong, G., Kim, H., & Lee, J. (2020). A Study on the Design of IPMSM for Reliability of Demagnetization Characteristics-Based Rotor. IEEE Transactions on Applied Superconductivity, 30 (4), 1–5.10.1109/TASC.2020.2982890 Search in Google Scholar

4. de Pancorbo, S. M., Ugalde, G., Poza, J., & Egea, A. (2015). Comparative study between induction motor and Synchronous Reluctance Motor for electrical railway traction applications. In 2015 5th International Electric Drives Production Conference (EDPC), (1560040). 15–16 September 2015, Nuremberg, Germany.10.1109/EDPC.2015.7323219 Search in Google Scholar

5. Jurca, F. N., Mircea, R., Martis, C., Martis, R., & Florin, P. P. (2014). Synchronous reluctance motors for small electric traction vehicle. In 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), (pp. 1–5). 4 December 2014, Iasi.10.1109/ICEPE.2014.6969920 Search in Google Scholar

6. Jurca, F. N., Ruba, M., & Marţiş, C. (2016). Design and control of synchronous reluctances motors for electric traction vehicle. In 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). 22–24 June 2016, Capri, Italy.10.1109/SPEEDAM.2016.7525824 Search in Google Scholar

7. Riley, C. P., Bedford, A. M., Topping, P. J., Reeve, J. M., Wale, J. D., Venskus, A. … & Ilea, D. (2014). Simulation based design of reluctance motors for traction applications in hybrid and electric vehicles. In 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014). 4 August 2014, Manchester.10.1049/cp.2014.0316 Search in Google Scholar

8. ABB. (2019). Low Voltage IE5 Synchronous Reluctance Motors. Available at http://new.abb.com Search in Google Scholar

9. SIEMENS AG. (2019). SIMOTICS Reluctance Motor with SINAMICS Frequency Converters. Available at http://www.industry.siemens.com Search in Google Scholar

10. Vagati, A., Pastorelli, M., Franceschini, G., & Petrache, S.C. (1998). Design of Low-Torque-Ripple Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 34 (4), 758–765.10.1109/28.703969 Search in Google Scholar

11. Lipo, T. A., & Matsuo, T. (1994). Rotor Design Optimization of Synchronous Reluctance Machine. IEEE Transaction on Energy Conversion, 9 (2), 359–365. Search in Google Scholar

12. Orlova, S., Vezzini, A., & Pugachov, V. (2015). Analysis of parameters for optimal design of synchronous reluctance motor. In 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). 14 October 2015, Riga, Latvia. doi:10.1109/RTUCON.2015.7343178 Open DOISearch in Google Scholar

13. Orlova, S., Pugachov, V., Rassõlkin, A., Kallaste, A., & Vaimann, T. (2019). Design of rotors for synchronous reluctance motor: Analytical treatment and optimization. In 21st European Conference on Power Electronics and Applications (EPE ‹19 ECCE Europe), (pp. 1–9). 3–5 September 2019, Genova, Italy.10.23919/EPE.2019.8914760 Search in Google Scholar

14. Boldea, I. (1996). Reluctance Synchronous Machines and Drives. Oxford: Clarendon Press. Search in Google Scholar

15. Boldea, I., & Nasar, S. A. (2009). The Induction Machines Design Handbook (2nd ed.). USA: CRC Press.10.1201/9781420066692 Search in Google Scholar

16. Pyrhonen, J., Jokinen T., & Hrabovcova V. (2008). Design of Rotating Electrical Machines. John Wiley & Sons.10.1002/9780470740095 Search in Google Scholar

17. Kопылов, И.П. (1986). Электрических машины. М.: Энергоатомиздат. Search in Google Scholar

18. Kolehmainen, J. (2010). Synchronous Reluctance Motor with Form Blocked Rotor. IEEE Trans. Energy Convers., 25 (2), 450–456.10.1109/TEC.2009.2038579 Search in Google Scholar

19. Gulbis, K., Kamoliņš, E., & Brakanskis, U. (2016). Synchronous reluctance machine with improved design of rotor mechanical strength connections. In 2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE 2016), (pp. 97–101). 10–12 November 2016, Lithuania, Vilnius.10.1109/AIEEE.2016.7821820 Search in Google Scholar

20. Gulbis, K., Kamoliņš, E., Brakanskis, U., & Zarembo, J. (2020). Parameter calculation method of synchronous reluctance motor including cross magnetic saturation. In 2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). 5–7 November 2020, Riga, Latvia.10.1109/RTUCON51174.2020.9316606 Search in Google Scholar

21. Rashad, E. M., Radwan, T. S., & Rahman, M. A. (2004). A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses. In 2004 IEEE Industry Applications Conference, 39th IAS Annual Meeting, (pp. 2411–2417). Seattle, WA, USA, doi: 10.1109/IAS.2004.1348813. Open DOISearch in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics