[
1. Bureš R., Rak P., Stoulil J. Long-term outdoor exposure of artificial copper patina based on brochantite, Koroze a ochrana materiálu 2020, 64(3) 87-94.10.2478/kom-2020-0013
]Search in Google Scholar
[
2. L. Robbiola, et al. New model of outdoor bronze corrosion and its implications for conservation. In ICOM Committee for Conservation tenth triennial meeting 1993, 2, 796-802.
]Search in Google Scholar
[
3. Walker R. Corrosion and preservation of bronze artifacts. J Chem Educ 1980; 57(4), 277-280.10.1021/ed057p277
]Search in Google Scholar
[
4. M. C. Bernard, S. Joiret, Understanding corrosion of ancient metals for the conservation of cultural heritage, Electrochimica Acta 2009, 54 (22), 5199-5205.10.1016/j.electacta.2009.01.036
]Search in Google Scholar
[
5. R. Picciochi, et al. Influence of the Environment on the Atmospheric Corrosion of Bronze. Journal of Applied Electrochemistry 2004, 34, 989–995.10.1023/B:JACH.0000042667.84920.e2
]Search in Google Scholar
[
6. Bureš R., Rak P., Stoulil J. Testing of pilot 2 m3 exposure chamber for formation of brochantite based patina on copper and copper alloys – objects of practical dimensions, Koroze a ochrana materiálu 2020, 64(3) 95-99.10.2478/kom-2020-0014
]Search in Google Scholar
[
7. V. Hayez, et al. Micro Raman spectroscopy used for the study of corrosion products on copper alloys: study of the chemical composition of artificial patinas used for restoration purposes. Analyst 2005, 130(4), 550-556.10.1039/b419080g15776167
]Search in Google Scholar
[
8. Van den Steen N. et al., An integrated modelling approach for atmospheric corrosion in presence of a varying electrolyte film, Electrochimica Acta 2016, 187, 714-723.10.1016/j.electacta.2015.11.010
]Search in Google Scholar
[
9. V. Hayez et al. Micro-Raman spectroscopy for the study of corrosion products on copper alloys: setting up of a reference database and studying works of art, Journal of Raman spectroscopy 2004, 35, 732-738.10.1002/jrs.1194
]Search in Google Scholar
[
10. Es Sebar L. et al. In-situ multi-analytical study of ongoing corrosion processes on bronze artworks exposed outdoors, Acta IMEKO 2021, 10 (1), 241-249.10.21014/acta_imeko.v10i1.894
]Search in Google Scholar
[
11. Švadlena J., Stoulil J. Evaluation of protective properties of acrylate varnishes used for conservation of historical metal artefacts, Koroze a ochrana materiálu 2017, 61(1), 25-31.10.1515/kom-2017-0003
]Search in Google Scholar
[
12. Noè C. et al. New UV-Curable Anticorrosion Coatings from Vegetable Oils, Macromolecular Materials and Engineering 2021, 306 (6), 2100029.10.1002/mame.202100029
]Search in Google Scholar
[
13. P. Croveri et al. Il restauro del monumento equestre ad Alfonso Ferrero della Marmora (Torino): stato di conservazione, diagnostica chimica, problematiche di intervento conservativo. In: IV Congresso Nazionale IGIIC (Italian Group International Institute for Conservation). Nardini Editore, 2006, 189-196.
]Search in Google Scholar
[
14. Iannucci L. Chemometrics for Data Interpretation: Application of Principal Components Analysis (PCA) to Multivariate Spectroscopic Measurements, IEEE Instrumentation and Measurement Magazine 2021, 24 (4), 42-48.10.1109/MIM.2021.9448250
]Search in Google Scholar
[
15. Pedregosa F. et al Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 2011, 12, 2825-2830.
]Search in Google Scholar
[
16. Es Sebar L. et al. Electrochemical Impedance Spectroscopy System Based on a Teensy Board, IEEE Transactions on Instrumentation and Measurement 2021, 70, 9259014.10.1109/TIM.2020.3038005
]Search in Google Scholar
[
17. E. Angelini et al. Corrosion Prediction of Metallic Cultural Heritage Assets by EIS, Corrosion Science and Technology 2019, 18 (4), 121-128.
]Search in Google Scholar
[
18. Es Sebar L. et al. Raman investigation of corrosion products on Roman copper-based artefacts, Acta IMEKO 2021, 10 (1), 129-135.10.21014/acta_imeko.v10i1.858
]Search in Google Scholar
[
19. J. Zhao et al. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy, Applied Spectroscopy 2007, 61 (11), 1225-32.10.1366/00037020778259700318028702
]Search in Google Scholar
[
20. Lafuente B. et al. The power of databases: the RRUFF project, Highlights in Mineralogical Crystallography 2015, 1-30.10.1515/9783110417104-003
]Search in Google Scholar
[
21. R. Frost Raman spectroscopy of selected copper minerals of significance in corrosion, Spectrochimica acta. Part A: molecular and biomolecular spectroscopy 2003, 59 (6), 1195-1204.10.1016/S1386-1425(02)00315-3
]Search in Google Scholar
[
22. L. Robbiola et al., Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys, Corrosion Science 1998, 40 (12), 2083-2111.10.1016/S0010-938X(98)00096-1
]Search in Google Scholar