1. bookVolumen 66 (2022): Edición 1 (January 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1804-1213
Primera edición
03 Apr 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Corrosion assessment of a bronze equestrian statue exposed to urban environment

Publicado en línea: 18 Apr 2022
Volumen & Edición: Volumen 66 (2022) - Edición 1 (January 2022)
Páginas: 50 - 55
Detalles de la revista
License
Formato
Revista
eISSN
1804-1213
Primera edición
03 Apr 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

This paper presents the characterization of the conservation state of a bronze equestrian statue exposed outdoor, through an in-situ, multi-analytical, and non-invasive approach. The artefact under study is a bronze equestrian statue, devoted to Alfonso La Marmora, placed in an urban environment in the city of Turin. The investigation was carried out in the framework of a restoration intervention, with the principal aim of characterizing the overall conservation state of the sculpture to provide the conservators with information useful to develop a tailored restoration plan. X-ray fluorescence spectroscopy (XRF) was carried out for the identification of the elements present in the artefact alloy, showing that the statue was made using mainly two bronze alloys. Electrochemical Impedance Spectroscopy (EIS) was performed to study the corrosion mechanisms and to define the protective effectiveness of the patina present on the surfaces. Eventually, Raman spectroscopy (RS) was performed to characterize the chemistry and microstructure of the corrosion products, mainly identified as sulphates. The combination of these techniques allowed to confirm the presence of wax layers from previous restoration work, still capable to protect the metal substrate against corrosion. In addition, it was possible to correlate the conservation state to the exposure conditions and location on the statue.

1. Bureš R., Rak P., Stoulil J. Long-term outdoor exposure of artificial copper patina based on brochantite, Koroze a ochrana materiálu 2020, 64(3) 87-94.10.2478/kom-2020-0013 Search in Google Scholar

2. L. Robbiola, et al. New model of outdoor bronze corrosion and its implications for conservation. In ICOM Committee for Conservation tenth triennial meeting 1993, 2, 796-802. Search in Google Scholar

3. Walker R. Corrosion and preservation of bronze artifacts. J Chem Educ 1980; 57(4), 277-280.10.1021/ed057p277 Search in Google Scholar

4. M. C. Bernard, S. Joiret, Understanding corrosion of ancient metals for the conservation of cultural heritage, Electrochimica Acta 2009, 54 (22), 5199-5205.10.1016/j.electacta.2009.01.036 Search in Google Scholar

5. R. Picciochi, et al. Influence of the Environment on the Atmospheric Corrosion of Bronze. Journal of Applied Electrochemistry 2004, 34, 989–995.10.1023/B:JACH.0000042667.84920.e2 Search in Google Scholar

6. Bureš R., Rak P., Stoulil J. Testing of pilot 2 m3 exposure chamber for formation of brochantite based patina on copper and copper alloys – objects of practical dimensions, Koroze a ochrana materiálu 2020, 64(3) 95-99.10.2478/kom-2020-0014 Search in Google Scholar

7. V. Hayez, et al. Micro Raman spectroscopy used for the study of corrosion products on copper alloys: study of the chemical composition of artificial patinas used for restoration purposes. Analyst 2005, 130(4), 550-556.10.1039/b419080g15776167 Search in Google Scholar

8. Van den Steen N. et al., An integrated modelling approach for atmospheric corrosion in presence of a varying electrolyte film, Electrochimica Acta 2016, 187, 714-723.10.1016/j.electacta.2015.11.010 Search in Google Scholar

9. V. Hayez et al. Micro-Raman spectroscopy for the study of corrosion products on copper alloys: setting up of a reference database and studying works of art, Journal of Raman spectroscopy 2004, 35, 732-738.10.1002/jrs.1194 Search in Google Scholar

10. Es Sebar L. et al. In-situ multi-analytical study of ongoing corrosion processes on bronze artworks exposed outdoors, Acta IMEKO 2021, 10 (1), 241-249.10.21014/acta_imeko.v10i1.894 Search in Google Scholar

11. Švadlena J., Stoulil J. Evaluation of protective properties of acrylate varnishes used for conservation of historical metal artefacts, Koroze a ochrana materiálu 2017, 61(1), 25-31.10.1515/kom-2017-0003 Search in Google Scholar

12. Noè C. et al. New UV-Curable Anticorrosion Coatings from Vegetable Oils, Macromolecular Materials and Engineering 2021, 306 (6), 2100029.10.1002/mame.202100029 Search in Google Scholar

13. P. Croveri et al. Il restauro del monumento equestre ad Alfonso Ferrero della Marmora (Torino): stato di conservazione, diagnostica chimica, problematiche di intervento conservativo. In: IV Congresso Nazionale IGIIC (Italian Group International Institute for Conservation). Nardini Editore, 2006, 189-196. Search in Google Scholar

14. Iannucci L. Chemometrics for Data Interpretation: Application of Principal Components Analysis (PCA) to Multivariate Spectroscopic Measurements, IEEE Instrumentation and Measurement Magazine 2021, 24 (4), 42-48.10.1109/MIM.2021.9448250 Search in Google Scholar

15. Pedregosa F. et al Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, 2011, 12, 2825-2830. Search in Google Scholar

16. Es Sebar L. et al. Electrochemical Impedance Spectroscopy System Based on a Teensy Board, IEEE Transactions on Instrumentation and Measurement 2021, 70, 9259014.10.1109/TIM.2020.3038005 Search in Google Scholar

17. E. Angelini et al. Corrosion Prediction of Metallic Cultural Heritage Assets by EIS, Corrosion Science and Technology 2019, 18 (4), 121-128. Search in Google Scholar

18. Es Sebar L. et al. Raman investigation of corrosion products on Roman copper-based artefacts, Acta IMEKO 2021, 10 (1), 129-135.10.21014/acta_imeko.v10i1.858 Search in Google Scholar

19. J. Zhao et al. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy, Applied Spectroscopy 2007, 61 (11), 1225-32.10.1366/000370207782597003 Search in Google Scholar

20. Lafuente B. et al. The power of databases: the RRUFF project, Highlights in Mineralogical Crystallography 2015, 1-30.10.1515/9783110417104-003 Search in Google Scholar

21. R. Frost Raman spectroscopy of selected copper minerals of significance in corrosion, Spectrochimica acta. Part A: molecular and biomolecular spectroscopy 2003, 59 (6), 1195-1204.10.1016/S1386-1425(02)00315-3 Search in Google Scholar

22. L. Robbiola et al., Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys, Corrosion Science 1998, 40 (12), 2083-2111.10.1016/S0010-938X(98)00096-1 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo