1. bookVolume 65 (2021): Issue 1 (May 2021)
Journal Details
License
Format
Journal
First Published
03 Apr 2012
Publication timeframe
4 times per year
Languages
English
access type Open Access

Environmentally assisted cracking in the low pressure superheated hydrogen steam

Published Online: 12 Jun 2021
Page range: 23 - 32
Journal Details
License
Format
Journal
First Published
03 Apr 2012
Publication timeframe
4 times per year
Languages
English
Abstract

Low pressure superheated H2-steam appears to be an interesting alternative to pressurized water environments, since it is capable of performing accelerated environmentally assisted cracking (EAC) experiments for nickel base and stainless steel alloys. Constant Extension Rate Tensile (CERT) tests were performed with displacement rates of 2×10-6 or 2×10-8 ms-1 at 350, 400, 440 and 480 °C on flat tapered specimens of Type 316L austenitic stainless steel. The tapered shape allows the determination of crack initiation over a range of stresses and strains simultaneously on one specimen and therefore the threshold stress value was obtained. The environment was 6 times more oxidizing than the dissociation pressure of NiO. The acquired mechanical properties are summarized and threshold stresses for EAC crack initiation are evaluated.

1. T. Couvant, L. Legras, A. Herbelin, A. Musienko, G. Ilevbare, D. Delafosse, G. Cailletaud, J. Hickling, Development of Understanding of The Interaction between Localized deformation and SCC of Austenitic Stainless Steels Exposed to Primary Environment, 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors 2010, 182–194. Search in Google Scholar

2. A. Herbelin, T. Couvant, L. Legras, D. Delafosse, G. Ilevbare, Oxidation of austenitic stainless steels in PWR primary water, EUROCORR 2009, 1592–1608. Search in Google Scholar

3. G. Economy, R. J. Jacko, F. W. Pement, IGSCC Behavior of Alloy 600 Steam-Generator Tubing in Water or Steam Tests above 360 C, Corrosion 1987, 43 (12), 727–73. Search in Google Scholar

4. B. M. Capell, G. S. Was, Selective Internal Oxidation as a Mechanism of Intergranular Stress Corrosion cracking of Ni-Cr-Fe alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 2007, 38 (6), 1244–1259. Search in Google Scholar

5. L. Chang, M. G. Burke, F. Scenini, Stress corrosion crack initiation in machined type 316L austenitic stainless steel in simulated pressurized water reactor primary water, Corrosion Science 2018, 138, 54–65. Search in Google Scholar

6. A. Hojná, M. Zimina, L. Rozumová, Effect of the Surface Grinding on the Environmentally Assisted Crack Initiation of 316 L Steel in Simulated Pressurized Water Reactor Water, Journal of Nuclear Engineering and Radiation Science 2019, 5, DOI: 10.1115/1.4043099 Search in Google Scholar

7. P. Pedeferri, Corrosion Science and Engineering, Springer 2018. Search in Google Scholar

8. U. Ehrnsten, Comprehensive Nuclear Materials, 5.05 Corrosion and Stress Corrosion Cracking of Austenitic Stainless Steels, Elsevier 2012, 93-103. Search in Google Scholar

9. S. M. Bruemmer, E. P. Simonen, P. M. Scott, P. L. Andresen, J. L. Nelson, Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals, Journal of Nuclear Materials 1999, 274, 299-314. Search in Google Scholar

10. D. Du, K. Chen, H. Lu, L. Zhang, X. Shi, X. Xu, P. L. Andresen, Effects of chloride and oxygen on stress corrosion cracking of coldworked 316/316L austenitic stainless steel in high temperature water, Corrosion Science 2016, 110, 134–142. Search in Google Scholar

11. S. Yamazaki, Z. Lu, Y. Ito, Y. Takeda, T. Shoji, The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water, Corrosion Science 2008, 50, 835–846. Search in Google Scholar

12. W. D. Callister, D. G. Rethwisch, Materials Science and Engineering, Wiley Binder Version 2014, ISBN: 978-1-118-47770-0. Search in Google Scholar

13. D. Du, K. Chen, L. Yu, H. lu, L. Zhang, X. Shi, X. Xu, SCC crack growth rate of cold worked 316L stainless steel in PWR environment, Journal of Nuclear Materials 2015, 456, 228–234. Search in Google Scholar

14. U S NRC Regulatory Guide 1.84, Design, Fabrication, and Materials Code Case Acceptability, ASME Section III., U S NRC Regulatory Guide 1.85, 2005. Search in Google Scholar

15. D. Feron, Nuclear corrosion science and engineering, Woodhead 2012. Search in Google Scholar

16. G. G. Scatigno, M. P. Ryan, F. Giuliani, M. R. Wenman, The effect of prior cold work on the chloride stress corrosion cracking of 304L austenitic stainless steel under atmospheric conditions. Materials Science and Engineering 2016, 668, 20–29. Search in Google Scholar

17. A. Turnbull, K. Mingard, J. D. Lord, B. Roebuck, D. R. Tice, K. J. Mottershead, N. D. Fairweather, A. K. Bradbury, Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure, Corrosion Science 2011, 53, 3398–3415. Search in Google Scholar

18. T. Couvant, L. Legras, A. Herbelin, A. Musienko, G. Ilevbare, D. Delafosse, G. Cailletaud, J. Hickling, Development of Understanding of the Interaction between Localized Deformation and SCC of Austenitic Stainless Steels Exposed to Primary PWR Environment, 14th Int. Conf. on Environmental Degradation of Materials in Nuclear Power Systems, 2009. Search in Google Scholar

19. S. Y. Persaud, A. Korinek, J. Huang, G. A. Botton, R. C. Newman, Internal oxidation of Alloy 600 exposed to hydro- genated steam and the beneficial effects of thermal treatment, Corrosion Science 2014, 86, 108–122. Search in Google Scholar

20. R-W. Bosch, S. Ritter, M. Herbst, R. Kilian, M. G. Burke, J. Duff, F. Scenini, Y. Gu, A. Dinu, U. Ehrnstén, A. Toivonen, R. Novotny, O. Martin, F-J Perosanz, A. Legat, B. Zajec, Stress corrosion crack initiation testing with tapered specimens in high-temperature water – results of a collaborative research project, Corrosion Engineering, Science and Technology 2020, DOI: 10.1080/1478422X.2020.1815460. Search in Google Scholar

21. F. Scenini, R. C. Newman, R. A. Cottis, R. J. Jacko, Alloy 600 oxidation studies related to PWSCC, 12th International Symposium on Environmental Degradation of Materials in Nuclear Power System - Water Reactors 2005, 891–902. Search in Google Scholar

22. S.Y. Persaud, S. Ramamurthy, R.C. Newman, Internal oxidation of alloy 690 in hydrogenated steam, Corrosion Science 2015, 90, 606–613. Search in Google Scholar

23. S.Y. Persaud, S. Ramamurthy, A. Korinek, G.A. Botton, R.C. Newman, The influence of the high Fe and Cr contents of Alloy 800 on its inter-and intragranular oxidation tendency in 480 °C hydrogenated steam, Corrosion Science 2016, 106, 117–126. Search in Google Scholar

24. J. Janoušek, F. Scenini, L. Volpe, A. Hojná, T. Trojan, Instrumentation for SCC testing in low pressure superheated hydrogen steam environments, IOP Conference Series: Materials Science and Engineering 2018, 461 (1). Search in Google Scholar

25. L. Volpe, G. Bertali, M. Curioni, M. G. Burke, F. Scenini, Replicating PWR primary water conditions in low pressure H2-steam environment to study alloy 600 oxidation processes, Journal of The Electrochemical Society 2019, 166 (2), C1-C8. Search in Google Scholar

26. J. Janoušek, F. Scenini, L. Volpe, A. Hojná, M. G. Burke, Environmentally-assisted cracking of type 316L austenitic stainless steel in low pressure hydrogen steam environments, Procedia Structural Integrity 2019, 17, 440–447. Search in Google Scholar

27. A. Hojná, P. Halodova, J. Janoušek, M. Zimina, Acceleration of environmentally-assisted cracking initiation of the Type 316L steel in high temperature water and hydrogenated steam vapor environments, CORROSION 2020, 10.5006/3653. Search in Google Scholar

28. K. Chen, J. Wang, Z. Shen, D. Du, X. Guo, B. Gong, J. Liu, L. Zhang, Comparison of the stress corrosion cracking growth behavior of cold worked Alloy 690 in subcritical and supercritical water, Journal of Nuclear Materials 2019, 520, 235-244. Search in Google Scholar

29. X.H. Chen, J. Lu, L. Lu, K. Lu, Tensile properties of a nanocrystalline 316L austenitic stainless steel, Scripta Materialia 2005, 52, 1039–1044. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo