This work is licensed under the Creative Commons Attribution 4.0 International License.
Monson, M.; Heuser, C.; Einerson, B.D.; Esplin, I.; Snow, G.; Varner, M.; Esplin, M.S. Evaluation of an external fetal electrocardiogram monitoring system: A randomized controlled trial. Am. J. Obstet. Gynecol. 2020, 223, e1–e244.MonsonM.HeuserC.EinersonB.D.EsplinI.SnowG.VarnerM.EsplinM.S.Evaluation of an external fetal electrocardiogram monitoring system: A randomized controlled trial. Am. J. Obstet. Gynecol. 2020, 223, e1–e244.Search in Google Scholar
Zwanenburg, F.; Jongbloed, M.R.M.; Van Geloven, N.; Ten Harkel, A.D.J.; Van Lith, J.M.M.; Haak, M.C. Assessment of human fetal cardiac autonomic nervous system development using color tissue Doppler imaging. Echocardiography 2021, 38, 974–981.ZwanenburgF.JongbloedM.R.M.Van GelovenN.Ten HarkelA.D.J.Van LithJ.M.M.HaakM.C.Assessment of human fetal cardiac autonomic nervous system development using color tissue Doppler imaging. Echocardiography2021, 38, 974–981.Search in Google Scholar
Fotiadou, E.; Xu, M.; Van Erp, B.; Van Sloun, R.J.G.; Vullings, R. Deep Convolutional Long Short-Term Memory Network for Fetal Heart Rate Extraction. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 608–611.FotiadouE.XuM.Van ErpB.Van SlounR.J.G.VullingsR.Deep Convolutional Long Short-Term Memory Network for Fetal Heart Rate Extraction. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24July2020; pp. 608–611.Search in Google Scholar
Sulas, E.; Urru, M.; Tumbarello, R.; Raffo, L.; Pani, D. Systematic analysis of single-and multi-reference adaptive filters for non-invasive fetal electrocardiography. Math. Biosci. Eng. 2019, 17, 286–308.SulasE.UrruM.TumbarelloR.RaffoL.PaniD.Systematic analysis of single-and multi-reference adaptive filters for non-invasive fetal electrocardiography. Math. Biosci. Eng. 2019, 17, 286–308.Search in Google Scholar
Taha, L.; Abdel-Raheem, E. A null space-based blind source separation for fetal electrocardiogram signals. Sensors 2020, 20, 3536.TahaL.Abdel-RaheemE.A null space-based blind source separation for fetal electrocardiogram signals. Sensors2020, 20, 3536.Search in Google Scholar
Barnova, K.; Martinek, R.; Jaros, R.; Kahankova, R.; Matonia, A.; Jezewski, M.; Czabanski, R.; Horoba, K.; Jezewski, J. A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction. PLoS ONE 2021, 16, e0256154.BarnovaK.MartinekR.JarosR.KahankovaR.MatoniaA.JezewskiM.CzabanskiR.HorobaK.JezewskiJ.A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction. PLoS ONE2021, 16, e0256154.Search in Google Scholar
Wu, S.; Shen, Y.; Zhou, Z.; Lin, L.; Zeng, Y.; Gao, X. Research of fetal ECG extraction using wavelet analysis and adaptive filtering. Comput. Biol. Med. 2013, 43, 1622–1627.WuS.ShenY.ZhouZ.LinL.ZengY.GaoX.Research of fetal ECG extraction using wavelet analysis and adaptive filtering. Comput. Biol. Med. 2013, 43, 1622–1627.Search in Google Scholar
Vasudeva, B.; Deora, P.; Pradhan, P.M.; Dasgupta, S. Efficient implementation of LMS adaptive filter-based FECG extraction on an FPGA. Healthc. Technol. Lett. 2020, 7, 125–131.VasudevaB.DeoraP.PradhanP.M.DasguptaS.Efficient implementation of LMS adaptive filter-based FECG extraction on an FPGA. Healthc. Technol. Lett. 2020, 7, 125–131.Search in Google Scholar
Ferranti, M.; Le, T.H.; Vandebril, R. A comparison between the complex symmetric based and classical computation of the singular value decomposition of normal matrices. Numer. Algorithms 2021, 67, 109–120.FerrantiM.LeT.H.VandebrilR.A comparison between the complex symmetric based and classical computation of the singular value decomposition of normal matrices. Numer. Algorithms2021, 67, 109–120.Search in Google Scholar
Kumar, A.; Tomar, H.; Mehla, V.K.; Komaragiri, R.; Kumar, M. Stationary wavelet transform based ECG signal denoising method. ISA Trans. 2021, 114, 251–262.KumarA.TomarH.MehlaV.K.KomaragiriR.KumarM. Stationary wavelet transform based ECG signal denoising method. ISA Trans. 2021, 114, 251–262.Search in Google Scholar
Martinek, R.; Kahankova, R.; Jezewski, J.; Jaros, R.; Mohylova, J.; Fajkus, M.; Nedoma, J.; Janku, P.; Nazeran, H. Comparative effectiveness of ICA and PCA in extraction of fetal ECG from abdominal signals: Toward non-invasive fetal monitoring. Front. Physiol. 2018, 9, 648.MartinekR.KahankovaR.JezewskiJ.JarosR.MohylovaJ.FajkusM.NedomaJ.JankuP.NazeranH.Comparative effectiveness of ICA and PCA in extraction of fetal ECG from abdominal signals: Toward non-invasive fetal monitoring. Front. Physiol. 2018, 9, 648.Search in Google Scholar
Sarafan, S.; Le, T.; Naderi, A.M.; Nguyen, Q.D.; Kuo, B.T.Y.; Ghirmai, T.; Han, H.D.; Lau, M.P.H.; Cao, H. Investigation of methods to extract fetal electrocardiogram from the mother’s abdominal signal in practical scenarios. Technologies 2020, 8, 33.SarafanS.LeT.NaderiA.M.NguyenQ.D.KuoB.T.Y.GhirmaiT.HanH.D.LauM.P.H.CaoH.Investigation of methods to extract fetal electrocardiogram from the mother’s abdominal signal in practical scenarios. Technologies2020, 8, 33.Search in Google Scholar
S. Mirza, K. Bhole and P. Singh, "Fetal ECG Extraction and QRS Detection using Independent Component Analysis," 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), 2020, pp. 157-161, doi: 10.1109/CSPA48992.2020.9068696.S.MirzaK.BholeP.Singh, "Fetal ECG Extraction and QRS Detection using Independent Component Analysis," 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), 2020, pp. 157–161, doi: 10.1109/CSPA48992.2020.9068696.Open DOISearch in Google Scholar
Hao, J.; Yang, Y.; Zhou, Z.; Wu, S. Fetal Electrocardiogram Signal Extraction Based on Fast Independent Component Analysis and Singular Value Decomposition. Sensors 2022, 22, 3705. https://doi.org/10.3390/s22103705HaoJ.YangY.ZhouZ.WuS.Fetal Electrocardiogram Signal Extraction Based on Fast Independent Component Analysis and Singular Value Decomposition. Sensors2022, 22, 3705. https://doi.org/10.3390/s22103705Search in Google Scholar
Anumukonda M, Lakkamraju P, Chowdhury SR. FPGA-Based High-Performance Phonocardiography System for Extraction of Cardiac Sound Components Using Inverse Delayed Neuron Model. Front Med Technol. 2021 Aug 12;3:666650. doi: 10.3389/fmedt.2021.666650. PMID: 35047923; PMCID: PMC8757846.AnumukondaMLakkamrajuPChowdhurySR.FPGA-Based High-Performance Phonocardiography System for Extraction of Cardiac Sound Components Using Inverse Delayed Neuron Model. Front Med Technol. 2021Aug12;3:666650. doi: 10.3389/fmedt.2021.666650. PMID: 35047923; PMCID: PMC8757846.Open DOISearch in Google Scholar
E. Fotiadou and R. Vullings, “Multi-Channel Fetal ECG Denoising with Deep Convolutional Neural Networks,” Frontiers in Pediatrics, vol.8, no.508, pp.1-13, 2020.E.FotiadouR.Vullings, “Multi-Channel Fetal ECG Denoising with Deep Convolutional Neural Networks,” Frontiers in Pediatrics, Vol.8, No.508, pp.1–13, 2020.Search in Google Scholar
18.Al-Saadany, D., Attallah, O., Elzaafarany, K., Nasser, A. (2022). A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_6018.Al-SaadanyD.AttallahO.ElzaafaranyK.NasserA. (2022). A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode. In: GroenD.de MulatierC.PaszynskiM.KrzhizhanovskayaV.V.DongarraJ.J.SlootP.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_60Search in Google Scholar
19.K. Meddah, M. Kedir Talha, H. Zairi, M. Nouah, S. Hadji, M. A Ait, B. Bessekri and H. Cherrih, “FPGA IMPLEMENTATION SYSTEM FOR QRS COMPLEX DETECTION,” Biomedical Engineering: Applications, Basis and Communications, Vol. 32, No. 1, pp. 1-14, 202019.K.MeddahM.Kedir TalhaH.ZairiM.NouahS.HadjiM.A AitB.BessekriH.Cherrih, “FPGA IMPLEMENTATION SYSTEM FOR QRS COMPLEX DETECTION,” Biomedical Engineering: Applications, Basis and Communications, Vol. 32, No. 1, pp. 1–14, 2020Search in Google Scholar
20.Y. Ching Ting, Fang-Wen Lo, Pei-Yun Tsai, “Implementation for Fetal ECG Detection from Multi-channel Abdominal Recordings with 2D Convolutional Neural Network,” Journal of Signal Processing Systems, pp.1-13, 2021, http://link.springer.com/article/article/article/10.1007/s11265-021-01676-w.20.Y.Ching TingFang-WenLoPei-YunTsai, “Implementation for Fetal ECG Detection from Multi-channel Abdominal Recordings with 2D Convolutional Neural Network,” Journal of Signal Processing Systems, pp.1–13, 2021, http://link.springer.com/article/article/article/10.1007/s11265-021-01676-w.Search in Google Scholar
21.C. M. Jose, C. Aarthi, “FPGA based fetal ECG denoising and extraction formedical diagnosis,” International Journal of Advance Research in Science and Engineering, vol.7, no.1, pp. 453-462, 2018.21.C. M.JoseC.Aarthi, “FPGA based fetal ECG denoising and extraction formedical diagnosis,” International Journal of Advance Research in Science and Engineering, Vol.7, No.1, pp. 453–462, 2018.Search in Google Scholar
22.Hua J, Rao J, Peng Y, Liu J, Tang J. Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM. Entropy (Basel). 2022 Jul 25;24(8):1024. doi: 10.3390/e24081024. PMID: 35893004; PMCID: PMC9394370.22.HuaJRaoJPengYLiuJTangJ.Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM. Entropy (Basel). 2022Jul25;24(8):1024. doi: 10.3390/e24081024. PMID: 35893004; PMCID: PMC9394370.Open DOISearch in Google Scholar
23.Edward B. Panganiban, Arnold C. Paglinawan, Wen Yaw Chung, Gilbert Lance S. Paa, “ECG diagnostic support system (EDSS): A deep learning neural network based classification system for detecting ECG abnormal rhythms from a low-powered wearable biosensors,” Sensing and Bio-Sensing Research, vol. 31, no. 100398, pp. 1-15, 2021.23.Edward B.PanganibanArnold C.PaglinawanWen YawChungGilbert Lance S.Paa, “ECG diagnostic support system (EDSS): A deep learning neural network based classification system for detecting ECG abnormal rhythms from a low-powered wearable biosensors,” Sensing and Bio-Sensing Research, vol. 31, No. 100398, pp. 1–15, 2021.Search in Google Scholar
Kumar, M.; Pachori, R.; Acharya, U. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 2017, 19, 488.KumarM.PachoriR.AcharyaU.Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy2017, 19, 488.Search in Google Scholar
Liu, W.; Zhang, M.; Zhang, Y.; Liao, Y.; Huang, Q.; Chang, S.; Wang, H.; He, J. Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Informat. 2017, 22, 1434–1444.LiuW.ZhangM.ZhangY.LiaoY.HuangQ.ChangS.WangH.HeJ.Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Informat. 2017, 22, 1434–1444.Search in Google Scholar
Lui, H.W.; Chow, K.L. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Informat. Med. Unlocked 2018, 13, 26–33.LuiH.W.ChowK.L.Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Informat. Med. Unlocked2018, 13, 26–33.Search in Google Scholar
Zhang, Y.; Li, J. Application of Heartbeat-Attention Mechanism for Detection of Myocardial Infarction Using 12-Lead ECG Records. Appl. Sci. 2019, 9, 3328.ZhangY.LiJ.Application of Heartbeat-Attention Mechanism for Detection of Myocardial Infarction Using 12-Lead ECG Records. Appl. Sci. 2019, 9, 3328.Search in Google Scholar
Liu, W.; Wang, F.; Huang, Q.; Chang, S.; Wang, H.; He, J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inform. 2019, 24, 503–514.LiuW.WangF.HuangQ.ChangS.WangH.HeJ.MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inform. 2019, 24, 503–514.Search in Google Scholar
Han, C.; Shi, L. ML–ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 2020, 185, 105138.HanC.ShiL.ML–ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 2020, 185, 105138.Search in Google Scholar
Liu, W.; Wang, F.; Huang, Q.; Chang, S.; Wang, H.; He, J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inform. 2019, 24, 503–514.LiuW.WangF.HuangQ.ChangS.WangH.HeJ.MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inform. 2019, 24, 503–514.Search in Google Scholar
Zhang, G.; Tang, L.; Zhou, L.; Liu, Z.; Liu, Y.; Jiang, Z. Principal Component Analysis Method with Space and Time Windows for Damage Detection. Sensors 2019, 19, 2521.ZhangG.TangL.ZhouL.LiuZ.LiuY.JiangZ.Principal Component Analysis Method with Space and Time Windows for Damage Detection. Sensors2019, 19, 2521.Search in Google Scholar
H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “FA3C: FPGA-accelerated deep reinforcement learning,” in Proc. 24th Int. Conf. Architect. Support Program. Lang. Oper. Syst., 2019, pp. 499–513.H.ChoP.OhJ.ParkW.JungJ.Lee, “FA3C: FPGA-accelerated deep reinforcement learning,” in Proc. 24th Int. Conf. Architect. Support Program. Lang. Oper. Syst., 2019, pp. 499–513.Search in Google Scholar
33.Y. Guan, et al., “FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc. IEEE 25th Annu. Int. Symp. Field-Programmable Custom Comput. Mach., 2017, pp. 152–159.33.Y.Guanet al.“FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc. IEEE 25th Annu. Int. Symp. Field-Programmable Custom Comput. Mach., 2017, pp. 152–159.Search in Google Scholar
T. J. Ham, et al., “A33: Accelerating attention mechanisms in neural networks with approximation,” in Proc. 26th IEEE Int. Symp. High-Perform. Comput. Archit., 2020, pp. 328–332T. J.Hamet al., “A33: Accelerating attention mechanisms in neural networks with approximation,” in Proc. 26th IEEE Int. Symp. High-Perform. Comput. Archit., 2020, pp. 328–332Search in Google Scholar
Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for long short-term memory recurrent neural networks,” in Proc. 22nd Asia South Pacific Des. Autom. Conf., 2017, pp. 629–634.Y.GuanZ.YuanG.SunJ.Cong, “FPGA-based accelerator for long short-term memory recurrent neural networks,” in Proc. 22nd Asia South Pacific Des. Autom. Conf., 2017, pp. 629–634.Search in Google Scholar