Accesso libero

Chat-GPT Powered IoT devices using regularizing the data for an efficient management systems

 e   
24 feb 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Monson, M.; Heuser, C.; Einerson, B.D.; Esplin, I.; Snow, G.; Varner, M.; Esplin, M.S. Evaluation of an external fetal electrocardiogram monitoring system: A randomized controlled trial. Am. J. Obstet. Gynecol. 2020, 223, e1–e244. Monson M. Heuser C. Einerson B.D. Esplin I. Snow G. Varner M. Esplin M.S. Evaluation of an external fetal electrocardiogram monitoring system: A randomized controlled trial . Am. J. Obstet. Gynecol . 2020 , 223 , e1 e244 . Search in Google Scholar

Zwanenburg, F.; Jongbloed, M.R.M.; Van Geloven, N.; Ten Harkel, A.D.J.; Van Lith, J.M.M.; Haak, M.C. Assessment of human fetal cardiac autonomic nervous system development using color tissue Doppler imaging. Echocardiography 2021, 38, 974–981. Zwanenburg F. Jongbloed M.R.M. Van Geloven N. Ten Harkel A.D.J. Van Lith J.M.M. Haak M.C. Assessment of human fetal cardiac autonomic nervous system development using color tissue Doppler imaging . Echocardiography 2021 , 38 , 974 981 . Search in Google Scholar

Fotiadou, E.; Xu, M.; Van Erp, B.; Van Sloun, R.J.G.; Vullings, R. Deep Convolutional Long Short-Term Memory Network for Fetal Heart Rate Extraction. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 608–611. Fotiadou E. Xu M. Van Erp B. Van Sloun R.J.G. Vullings R. Deep Convolutional Long Short-Term Memory Network for Fetal Heart Rate Extraction . In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) , Montreal, QC, Canada , 20–24 July 2020 ; pp. 608 611 . Search in Google Scholar

Sulas, E.; Urru, M.; Tumbarello, R.; Raffo, L.; Pani, D. Systematic analysis of single-and multi-reference adaptive filters for non-invasive fetal electrocardiography. Math. Biosci. Eng. 2019, 17, 286–308. Sulas E. Urru M. Tumbarello R. Raffo L. Pani D. Systematic analysis of single-and multi-reference adaptive filters for non-invasive fetal electrocardiography . Math. Biosci. Eng . 2019 , 17 , 286 308 . Search in Google Scholar

Taha, L.; Abdel-Raheem, E. A null space-based blind source separation for fetal electrocardiogram signals. Sensors 2020, 20, 3536. Taha L. Abdel-Raheem E. A null space-based blind source separation for fetal electrocardiogram signals . Sensors 2020 , 20 , 3536 . Search in Google Scholar

Barnova, K.; Martinek, R.; Jaros, R.; Kahankova, R.; Matonia, A.; Jezewski, M.; Czabanski, R.; Horoba, K.; Jezewski, J. A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction. PLoS ONE 2021, 16, e0256154. Barnova K. Martinek R. Jaros R. Kahankova R. Matonia A. Jezewski M. Czabanski R. Horoba K. Jezewski J. A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction . PLoS ONE 2021 , 16 , e0256154 . Search in Google Scholar

Wu, S.; Shen, Y.; Zhou, Z.; Lin, L.; Zeng, Y.; Gao, X. Research of fetal ECG extraction using wavelet analysis and adaptive filtering. Comput. Biol. Med. 2013, 43, 1622–1627. Wu S. Shen Y. Zhou Z. Lin L. Zeng Y. Gao X. Research of fetal ECG extraction using wavelet analysis and adaptive filtering . Comput. Biol. Med . 2013 , 43 , 1622 1627 . Search in Google Scholar

Vasudeva, B.; Deora, P.; Pradhan, P.M.; Dasgupta, S. Efficient implementation of LMS adaptive filter-based FECG extraction on an FPGA. Healthc. Technol. Lett. 2020, 7, 125–131. Vasudeva B. Deora P. Pradhan P.M. Dasgupta S. Efficient implementation of LMS adaptive filter-based FECG extraction on an FPGA . Healthc. Technol. Lett . 2020 , 7 , 125 131 . Search in Google Scholar

Ferranti, M.; Le, T.H.; Vandebril, R. A comparison between the complex symmetric based and classical computation of the singular value decomposition of normal matrices. Numer. Algorithms 2021, 67, 109–120. Ferranti M. Le T.H. Vandebril R. A comparison between the complex symmetric based and classical computation of the singular value decomposition of normal matrices . Numer. Algorithms 2021 , 67 , 109 120 . Search in Google Scholar

Kumar, A.; Tomar, H.; Mehla, V.K.; Komaragiri, R.; Kumar, M. Stationary wavelet transform based ECG signal denoising method. ISA Trans. 2021, 114, 251–262. Kumar A. Tomar H. Mehla V.K. Komaragiri R. Kumar M. Stationary wavelet transform based ECG signal denoising method . ISA Trans . 2021 , 114 , 251 262 . Search in Google Scholar

Martinek, R.; Kahankova, R.; Jezewski, J.; Jaros, R.; Mohylova, J.; Fajkus, M.; Nedoma, J.; Janku, P.; Nazeran, H. Comparative effectiveness of ICA and PCA in extraction of fetal ECG from abdominal signals: Toward non-invasive fetal monitoring. Front. Physiol. 2018, 9, 648. Martinek R. Kahankova R. Jezewski J. Jaros R. Mohylova J. Fajkus M. Nedoma J. Janku P. Nazeran H. Comparative effectiveness of ICA and PCA in extraction of fetal ECG from abdominal signals: Toward non-invasive fetal monitoring . Front. Physiol . 2018 , 9 , 648 . Search in Google Scholar

Sarafan, S.; Le, T.; Naderi, A.M.; Nguyen, Q.D.; Kuo, B.T.Y.; Ghirmai, T.; Han, H.D.; Lau, M.P.H.; Cao, H. Investigation of methods to extract fetal electrocardiogram from the mother’s abdominal signal in practical scenarios. Technologies 2020, 8, 33. Sarafan S. Le T. Naderi A.M. Nguyen Q.D. Kuo B.T.Y. Ghirmai T. Han H.D. Lau M.P.H. Cao H. Investigation of methods to extract fetal electrocardiogram from the mother’s abdominal signal in practical scenarios . Technologies 2020 , 8 , 33 . Search in Google Scholar

S. Mirza, K. Bhole and P. Singh, "Fetal ECG Extraction and QRS Detection using Independent Component Analysis," 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), 2020, pp. 157-161, doi: 10.1109/CSPA48992.2020.9068696. S. Mirza K. Bhole P. Singh , " Fetal ECG Extraction and QRS Detection using Independent Component Analysis ," 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA) , 2020 , pp. 157 161 , doi: 10.1109/CSPA48992.2020.9068696 . Open DOISearch in Google Scholar

Hao, J.; Yang, Y.; Zhou, Z.; Wu, S. Fetal Electrocardiogram Signal Extraction Based on Fast Independent Component Analysis and Singular Value Decomposition. Sensors 2022, 22, 3705. https://doi.org/10.3390/s22103705 Hao J. Yang Y. Zhou Z. Wu S. Fetal Electrocardiogram Signal Extraction Based on Fast Independent Component Analysis and Singular Value Decomposition . Sensors 2022 , 22 , 3705 . https://doi.org/10.3390/s22103705 Search in Google Scholar

Anumukonda M, Lakkamraju P, Chowdhury SR. FPGA-Based High-Performance Phonocardiography System for Extraction of Cardiac Sound Components Using Inverse Delayed Neuron Model. Front Med Technol. 2021 Aug 12;3:666650. doi: 10.3389/fmedt.2021.666650. PMID: 35047923; PMCID: PMC8757846. Anumukonda M Lakkamraju P Chowdhury SR. FPGA-Based High-Performance Phonocardiography System for Extraction of Cardiac Sound Components Using Inverse Delayed Neuron Model . Front Med Technol . 2021 Aug 12 ; 3 : 666650 . doi: 10.3389/fmedt.2021.666650. PMID: 35047923; PMCID: PMC8757846 . Open DOISearch in Google Scholar

E. Fotiadou and R. Vullings, “Multi-Channel Fetal ECG Denoising with Deep Convolutional Neural Networks,” Frontiers in Pediatrics, vol.8, no.508, pp.1-13, 2020. E. Fotiadou R. Vullings , “ Multi-Channel Fetal ECG Denoising with Deep Convolutional Neural Networks ,” Frontiers in Pediatrics , Vol. 8 , No. 508 , pp. 1 13 , 2020 . Search in Google Scholar

18.Al-Saadany, D., Attallah, O., Elzaafarany, K., Nasser, A. (2022). A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_60 18. Al-Saadany D. Attallah O. Elzaafarany K. Nasser A. ( 2022 ). A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode . In: Groen D. de Mulatier C. Paszynski M. Krzhizhanovskaya V.V. Dongarra J.J. Sloot P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science , vol 13351 . Springer , Cham . https://doi.org/10.1007/978-3-031-08754-7_60 Search in Google Scholar

19.K. Meddah, M. Kedir Talha, H. Zairi, M. Nouah, S. Hadji, M. A Ait, B. Bessekri and H. Cherrih, “FPGA IMPLEMENTATION SYSTEM FOR QRS COMPLEX DETECTION,” Biomedical Engineering: Applications, Basis and Communications, Vol. 32, No. 1, pp. 1-14, 2020 19. K. Meddah M. Kedir Talha H. Zairi M. Nouah S. Hadji M. A Ait B. Bessekri H. Cherrih , “ FPGA IMPLEMENTATION SYSTEM FOR QRS COMPLEX DETECTION ,” Biomedical Engineering: Applications, Basis and Communications , Vol. 32 , No. 1 , pp. 1 14 , 2020 Search in Google Scholar

20.Y. Ching Ting, Fang-Wen Lo, Pei-Yun Tsai, “Implementation for Fetal ECG Detection from Multi-channel Abdominal Recordings with 2D Convolutional Neural Network,” Journal of Signal Processing Systems, pp.1-13, 2021, http://link.springer.com/article/article/article/10.1007/s11265-021-01676-w. 20. Y. Ching Ting Fang-Wen Lo Pei-Yun Tsai , “ Implementation for Fetal ECG Detection from Multi-channel Abdominal Recordings with 2D Convolutional Neural Network ,” Journal of Signal Processing Systems , pp. 1 13 , 2021 , http://link.springer.com/article/article/article/10.1007/s11265-021-01676-w. Search in Google Scholar

21.C. M. Jose, C. Aarthi, “FPGA based fetal ECG denoising and extraction formedical diagnosis,” International Journal of Advance Research in Science and Engineering, vol.7, no.1, pp. 453-462, 2018. 21. C. M. Jose C. Aarthi , “ FPGA based fetal ECG denoising and extraction formedical diagnosis ,” International Journal of Advance Research in Science and Engineering , Vol. 7 , No. 1 , pp. 453 462 , 2018 . Search in Google Scholar

22.Hua J, Rao J, Peng Y, Liu J, Tang J. Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM. Entropy (Basel). 2022 Jul 25;24(8):1024. doi: 10.3390/e24081024. PMID: 35893004; PMCID: PMC9394370. 22. Hua J Rao J Peng Y Liu J Tang J. Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM . Entropy (Basel) . 2022 Jul 25 ; 24 ( 8 ): 1024 . doi: 10.3390/e24081024 . PMID: 35893004; PMCID: PMC9394370. Open DOISearch in Google Scholar

23.Edward B. Panganiban, Arnold C. Paglinawan, Wen Yaw Chung, Gilbert Lance S. Paa, “ECG diagnostic support system (EDSS): A deep learning neural network based classification system for detecting ECG abnormal rhythms from a low-powered wearable biosensors,” Sensing and Bio-Sensing Research, vol. 31, no. 100398, pp. 1-15, 2021. 23. Edward B. Panganiban Arnold C. Paglinawan Wen Yaw Chung Gilbert Lance S. Paa , “ ECG diagnostic support system (EDSS): A deep learning neural network based classification system for detecting ECG abnormal rhythms from a low-powered wearable biosensors ,” Sensing and Bio-Sensing Research , vol. 31 , No. 100398 , pp. 1 15 , 2021 . Search in Google Scholar

Kumar, M.; Pachori, R.; Acharya, U. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 2017, 19, 488. Kumar M. Pachori R. Acharya U. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework . Entropy 2017 , 19 , 488 . Search in Google Scholar

Liu, W.; Zhang, M.; Zhang, Y.; Liao, Y.; Huang, Q.; Chang, S.; Wang, H.; He, J. Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Informat. 2017, 22, 1434–1444. Liu W. Zhang M. Zhang Y. Liao Y. Huang Q. Chang S. Wang H. He J. Real-time multilead convolutional neural network for myocardial infarction detection . IEEE J. Biomed. Health Informat . 2017 , 22 , 1434 1444 . Search in Google Scholar

Lui, H.W.; Chow, K.L. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Informat. Med. Unlocked 2018, 13, 26–33. Lui H.W. Chow K.L. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices . Informat. Med. Unlocked 2018 , 13 , 26 33 . Search in Google Scholar

Zhang, Y.; Li, J. Application of Heartbeat-Attention Mechanism for Detection of Myocardial Infarction Using 12-Lead ECG Records. Appl. Sci. 2019, 9, 3328. Zhang Y. Li J. Application of Heartbeat-Attention Mechanism for Detection of Myocardial Infarction Using 12-Lead ECG Records . Appl. Sci . 2019 , 9 , 3328 . Search in Google Scholar

Liu, W.; Wang, F.; Huang, Q.; Chang, S.; Wang, H.; He, J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inform. 2019, 24, 503–514. Liu W. Wang F. Huang Q. Chang S. Wang H. He J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs . IEEE J. Biomed. Health Inform . 2019 , 24 , 503 514 . Search in Google Scholar

Han, C.; Shi, L. ML–ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 2020, 185, 105138. Han C. Shi L. ML–ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG . Comput. Methods Programs Biomed . 2020 , 185 , 105138 . Search in Google Scholar

Liu, W.; Wang, F.; Huang, Q.; Chang, S.; Wang, H.; He, J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inform. 2019, 24, 503–514. Liu W. Wang F. Huang Q. Chang S. Wang H. He J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs . IEEE J. Biomed. Health Inform . 2019 , 24 , 503 514 . Search in Google Scholar

Zhang, G.; Tang, L.; Zhou, L.; Liu, Z.; Liu, Y.; Jiang, Z. Principal Component Analysis Method with Space and Time Windows for Damage Detection. Sensors 2019, 19, 2521. Zhang G. Tang L. Zhou L. Liu Z. Liu Y. Jiang Z. Principal Component Analysis Method with Space and Time Windows for Damage Detection . Sensors 2019 , 19 , 2521 . Search in Google Scholar

H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “FA3C: FPGA-accelerated deep reinforcement learning,” in Proc. 24th Int. Conf. Architect. Support Program. Lang. Oper. Syst., 2019, pp. 499–513. H. Cho P. Oh J. Park W. Jung J. Lee , “ FA3C: FPGA-accelerated deep reinforcement learning ,” in Proc. 24th Int. Conf. Architect. Support Program. Lang. Oper. Syst ., 2019 , pp. 499 513 . Search in Google Scholar

33.Y. Guan, et al., “FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc. IEEE 25th Annu. Int. Symp. Field-Programmable Custom Comput. Mach., 2017, pp. 152–159. 33. Y. Guan et al. “FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates ,” in Proc. IEEE 25th Annu. Int. Symp. Field-Programmable Custom Comput. Mach ., 2017 , pp. 152 159 . Search in Google Scholar

T. J. Ham, et al., “A33: Accelerating attention mechanisms in neural networks with approximation,” in Proc. 26th IEEE Int. Symp. High-Perform. Comput. Archit., 2020, pp. 328–332 T. J. Ham et al. , “ A33: Accelerating attention mechanisms in neural networks with approximation ,” in Proc. 26th IEEE Int. Symp. High-Perform. Comput. Archit ., 2020 , pp. 328 332 Search in Google Scholar

Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for long short-term memory recurrent neural networks,” in Proc. 22nd Asia South Pacific Des. Autom. Conf., 2017, pp. 629–634. Y. Guan Z. Yuan G. Sun J. Cong , “ FPGA-based accelerator for long short-term memory recurrent neural networks ,” in Proc. 22nd Asia South Pacific Des. Autom. Conf ., 2017 , pp. 629 634 . Search in Google Scholar