This work is licensed under the Creative Commons Attribution 4.0 International License.
Alves EAS, Salazar TC do N, Silvino VO, Cardoso GA, dos Santos MAP. Association between phase angle and adverse clinical outcomes in hospitalized patients with COVID-19: A systematic review. Nutr Clin Pract. 2022;37:1105–1116. https://doi.org/10.1002/ncp.10901.AlvesEASSalazar TC doNSilvinoVOCardosoGAdos SantosMAPAssociation between phase angle and adverse clinical outcomes in hospitalized patients with COVID-19: A systematic reviewNutr Clin Pract20223711051116https://doi.org/10.1002/ncp.10901.Search in Google Scholar
Bellido D, García-García C, Talluri A, Lukaski HC, García-Almeida JM. Future lines of research on phase angle: Strengths and limitations. Rev Endocr Metab Disord. 2023;24:563–83. https://doi.org/10.1007/s11154-023-09803-7.BellidoDGarcía-GarcíaCTalluriALukaskiHCGarcía-AlmeidaJMFuture lines of research on phase angle: Strengths and limitationsRev Endocr Metab Disord20232456383https://doi.org/10.1007/s11154-023-09803-7.Search in Google Scholar
Peng Z, Xu D, Li Y, Peng Y, Liu X. Phase Angle as a Comprehensive Tool for Nutritional Monitoring and Management in Patients with Crohn's Disease. Nutrients. 2022;14:2260. https://doi.org/10.3390/nu14112260.PengZXuDLiYPengYLiuXPhase Angle as a Comprehensive Tool for Nutritional Monitoring and Management in Patients with Crohn's DiseaseNutrients2022142260https://doi.org/10.3390/nu14112260.Search in Google Scholar
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, et al. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng. 2021;7:1962–1986. https://doi.org/10.1021/acsbiomaterials.0c01570.StupinDDKuzinaEAAbelitAAEmelyanovAKNikolaevDMRyazantsevMNBioimpedance Spectroscopy: Basics and ApplicationsACS Biomater Sci Eng2021719621986https://doi.org/10.1021/acsbiomaterials.0c01570.Search in Google Scholar
Pérez-Morales R, Donate-Correa J, Martín-Núñez E, Pérez-Delgado N, Ferri C, López-Montes A, et al. Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Ren Fail. 2021;43:821–829. https://doi.org/10.1080/0886022X.2021.1922442.Pérez-MoralesRDonate-CorreaJMartín-NúñezEPérez-DelgadoNFerriCLópez-MontesAExtracellular water/total body water ratio as predictor of mortality in hemodialysis patientsRen Fail202143821829https://doi.org/10.1080/0886022X.2021.1922442.Search in Google Scholar
Campa F, Gobbo LA, Stagi S, Cyrino LT, Toselli S, Marini E, et al. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur J Appl Physiol. 2022;122(3):561–589. https://doi.org/10.1007/s00421-021-04879-y.CampaFGobboLAStagiSCyrinoLTToselliSMariniEBioelectrical impedance analysis versus reference methods in the assessment of body composition in athletesEur J Appl Physiol20221223561589https://doi.org/10.1007/s00421-021-04879-y.Search in Google Scholar
Carobbio ALC, Cheng Z, Gianiorio T, Missale F, Africano S, Ascoli A, et al. Electric Bioimpedance Sensing for the Detection of Head and Neck Squamous Cell Carcinoma. Diagnostics. 2023;13:2453. https://doi.org/10.3390/diagnostics13142453.CarobbioALCChengZGianiorioTMissaleFAfricanoSAscoliAElectric Bioimpedance Sensing for the Detection of Head and Neck Squamous Cell CarcinomaDiagnostics2023132453https://doi.org/10.3390/diagnostics13142453.Search in Google Scholar
Schotman JM, Van Borren MM, Kooistra MP, Doorenbos CJ, de Boer H. Towards personalized hydration assessment in patients, based on measurement of total body electrical resistance: Back to basics. Clinical nutrition ESPEN. 2020;35:116–122. https://doi.org/10.1016/j.clnesp.2019.10.018.SchotmanJMVan BorrenMMKooistraMPDoorenbosCJde BoerHTowards personalized hydration assessment in patients, based on measurement of total body electrical resistance: Back to basicsClinical nutrition ESPEN202035116122https://doi.org/10.1016/j.clnesp.2019.10.018.Search in Google Scholar
AlDisi R, Bader Q, Bermak A. Hydration Assessment Using the Bio-Impedance Analysis Method. Sensors. 2022;22(17):6350. https://doi.org/10.3390/s22176350.AlDisiRBaderQBermakAHydration Assessment Using the Bio-Impedance Analysis MethodSensors202222176350https://doi.org/10.3390/s22176350.Search in Google Scholar
Karavetian M, Salhab N, Rizk R, Poulia KA. Malnutrition-inflammation score VS phase angle in the era of GLIM criteria: A cross-sectional study among hemodialysis patients in UAE. Nutrients. 2019;11. https://doi.org/10.3390/nu11112771.KaravetianMSalhabNRizkRPouliaKAMalnutrition-inflammation score VS phase angle in the era of GLIM criteria: A cross-sectional study among hemodialysis patients in UAENutrients201911https://doi.org/10.3390/nu11112771.Search in Google Scholar
Lukaski HC, García-Almeida JM. Phase angle in applications of bioimpedance in health and disease. Reviews in Endocrine and Metabolic Disorders. 2023;24(3):367–370. https://doi.org/10.1007/s11154-023-09799-0.LukaskiHCGarcía-AlmeidaJMPhase angle in applications of bioimpedance in health and diseaseReviews in Endocrine and Metabolic Disorders2023243367370https://doi.org/10.1007/s11154-023-09799-0.Search in Google Scholar
Van der Sande FM, Van de Wal-Visscher ER, Stuard S, Moissl U, Kooman JP. Using bioimpedance spectroscopy to assess volume status in dialysis patients. Blood Purif. 2020; 49(1):178–184. https://doi.org/10.1159/000504079.Van der SandeFMVan de Wal-VisscherERStuardSMoisslUKoomanJPUsing bioimpedance spectroscopy to assess volume status in dialysis patientsBlood Purif2020491178184https://doi.org/10.1159/000504079.Search in Google Scholar
Bello JLG, Luna TB, Lara Lafargue A, Ciria HMC, Zulueta YA, Bioimpedance formalism: A new approach for accessing the health status of cell and tissues, Bioelectrochemistry. 2024;160:108799. https://doi.org/10.1016/j.bioelechem.2024.108799.BelloJLGLunaTBLara LafargueACiriaHMCZuluetaYABioimpedance formalism: A new approach for accessing the health status of cell and tissuesBioelectrochemistry2024160108799https://doi.org/10.1016/j.bioelechem.2024.108799.Search in Google Scholar
Chaunzwa TL, Qian JM, Li Q, Ricciuti B, Nuernberg L, Johnson JW, Weiss J, Zhang Z, MacKay J, Kagiampakis I, Bikiel D, Di Federico A, Alessi JV, Mak RH, Jacob E, Awad MM, Aerts HJWL. Body Composition in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. JAMA Oncol. 2024;10:773–783. https://doi.org/10.1001/JAMAONCOL.2024.1120.ChaunzwaTLQianJMLiQRicciutiBNuernbergLJohnsonJWWeissJZhangZMacKayJKagiampakisIBikielDDi FedericoAAlessiJVMakRHJacobEAwadMMAertsHJWLBody Composition in Advanced Non-Small Cell Lung Cancer Treated with ImmunotherapyJAMA Oncol202410773783https://doi.org/10.1001/JAMAONCOL.2024.1120.Search in Google Scholar
Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical Impedance Spectroscopy in Skin Cancer Diagnosis. Dermatol. Clin. 2017;35:489–493. https://doi.org/10.1016/j.det.2017.06.009.BraunRPManganaJGoldingerSFrenchLDummerRMarghoobAAElectrical Impedance Spectroscopy in Skin Cancer DiagnosisDermatol. Clin201735489493https://doi.org/10.1016/j.det.2017.06.009.Search in Google Scholar
Baidillah MR, Riyanto R, Busono P, Karim S, Febryarto R, Astasari A, Sangaji D, Taruno WP. Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques. Measurement. 2024;226:114111. https://doi.org/10.1016/J.MEASUREMENT.2023.114111.BaidillahMRRiyantoRBusonoPKarimSFebryartoRAstasariASangajiDTarunoWPElectrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniquesMeasurement2024226114111https://doi.org/10.1016/J.MEASUREMENT.2023.114111.Search in Google Scholar
da Silva BR, Rufato S, Mialich MS, Cruz LP, Gozzo T, Jordão AA. Phase angle is related to oxidative stress and antioxidant biomarkers in breast cancer patients undergoing chemotherapy. PLoS One. 2023;18:e0283235. https://doi.org/10.1371/journal.pone.0283235.da SilvaBRRufatoSMialichMSCruzLPGozzoTJordãoAAPhase angle is related to oxidative stress and antioxidant biomarkers in breast cancer patients undergoing chemotherapyPLoS One202318e0283235https://doi.org/10.1371/journal.pone.0283235.Search in Google Scholar
Jung M, Jeon JY, Yun GJ, Yang S, Kwon S, Seo YJ. Reference values of bioelectrical impedance analysis for detecting breast cancer-related lymphedema. Med. (United States). 2018;97:1–6. https://doi.org/10.1097/MD.0000000000012945.JungMJeonJYYunGJYangSKwonSSeoYJReference values of bioelectrical impedance analysis for detecting breast cancer-related lymphedemaMed. (United States)20189716https://doi.org/10.1097/MD.0000000000012945.Search in Google Scholar
Mansouri S, Alhadidi T, Ben Azouz M. Breast cancer detection using low-frequency bioimpedance device. Breast Cancer Targets Ther. 2020;12:109–116. https://doi.org/10.2147/BCTT.S274421.MansouriSAlhadidiTBen AzouzMBreast cancer detection using low-frequency bioimpedance deviceBreast Cancer Targets Ther202012109116https://doi.org/10.2147/BCTT.S274421.Search in Google Scholar
Aljarrah M, Salman F. A Simple Analysis of Impedance Spectroscopy: Review. J Inst Eng. 2021;102(1):237–242. https://doi.org/10.1007/s40033-021-00252-7.AljarrahMSalmanFA Simple Analysis of Impedance Spectroscopy: ReviewJ Inst Eng20211021237242https://doi.org/10.1007/s40033-021-00252-7.Search in Google Scholar
Pingel J, Harrison A, Von Walden F, Hjalmarsson E, Bartels EM. Multi-frequency bioimpedance: a non-invasive tool for muscle-health assessment of adults with cerebral palsy. J Muscle Res Cell Motil. 2020;41:211–219. https://doi.org/10.1007/s10974-020-09579-2.PingelJHarrisonAVon WaldenFHjalmarssonEBartelsEMMulti-frequency bioimpedance: a non-invasive tool for muscle-health assessment of adults with cerebral palsyJ Muscle Res Cell Motil202041211219https://doi.org/10.1007/s10974-020-09579-2.Search in Google Scholar
Kanoun O, Kallel AY, Nouri H, Atitallah BB, Haddad D, Hu Z, et al. Impedance spectroscopy: applications, advances and future trends. IEEE Instrumentation & Measurement Magazine. 2022;25(3):11–21. https://doi.org/10.1109/MIM.2022.9759355.KanounOKallelAYNouriHAtitallahBBHaddadDHuZImpedance spectroscopy: applications, advances and future trendsIEEE Instrumentation & Measurement Magazine20222531121https://doi.org/10.1109/MIM.2022.9759355.Search in Google Scholar
Wang LC, Raimann JG, Tao X, Preciado P, Thwin O, Rosales L, et al. Estimation of fluid status using three multifrequency bioimpedance methods in hemodialysis patients. Hemodial Int. 2022;26(4):575–587. https://doi.org/10.1111/hdi.13034.WangLCRaimannJGTaoXPreciadoPThwinORosalesLEstimation of fluid status using three multifrequency bioimpedance methods in hemodialysis patientsHemodial Int2022264575587https://doi.org/10.1111/hdi.13034.Search in Google Scholar
Abasi S, Aggas JR, Garayar-Leyva GG, Walther BK, Guiseppi-Elie A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS Measurement Science. 2022;2(6):495–516. https://doi.org/10.1021/acsmeasuresciau.2c00033.AbasiSAggasJRGarayar-LeyvaGGWaltherBKGuiseppi-ElieABioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A ReviewACS Measurement Science202226495516https://doi.org/10.1021/acsmeasuresciau.2c00033.Search in Google Scholar
Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Ellershaw J. The association of hydration status with physical signs, symptoms and survival in advanced cancer - The use of Bioelectrical Impedance Vector Analysis (BIVA) Technology to evaluate fluid volume in palliative care: An observational study. PLoS One. 2016;11:e0163114. https://doi.org/10.1371/journal.pone.0163114.NwosuACMaylandCRMasonSCoxTFVarroAEllershawJThe association of hydration status with physical signs, symptoms and survival in advanced cancer - The use of Bioelectrical Impedance Vector Analysis (BIVA) Technology to evaluate fluid volume in palliative care: An observational studyPLoS One201611e0163114https://doi.org/10.1371/journal.pone.0163114.Search in Google Scholar
Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994;46:534–539. https://doi.org/10.1038/ki.1994.305.PiccoliARossiBPillonLBuccianteGA new method for monitoring body fluid variation by bioimpedance analysis: The RXc graphKidney Int199446534539https://doi.org/10.1038/ki.1994.305.Search in Google Scholar
Campa F, Toselli S. Bioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018;13:1250–1253. https://doi.org/10.1123/IJSPP.2018-0039.CampaFToselliSBioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball PlayersInt. J. Sports Physiol. Perform20181312501253https://doi.org/10.1123/IJSPP.2018-0039.Search in Google Scholar
Martins PC, Gobbo LA, Silva DAS. Bioelectrical impedance vector analysis (BIVA) in university athletes. J. Int. Soc. Sports Nutr. 2021;18:1–8. https://doi.org/10.1186/S12970-020-00403-3/FIGURES/3.MartinsPCGobboLASilvaDASBioelectrical impedance vector analysis (BIVA) in university athletesJ. Int. Soc. Sports Nutr20211818https://doi.org/10.1186/S12970-020-00403-3/FIGURES/3.Search in Google Scholar
Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Stanley S, Ellershaw J. Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clin. Nutr. ESPEN. 2019;30:59–66. https://doi.org/10.1016/j.clnesp.2019.02.006.NwosuACMaylandCRMasonSCoxTFVarroAStanleySEllershawJBioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and typeClin. Nutr. ESPEN2019305966https://doi.org/10.1016/j.clnesp.2019.02.006.Search in Google Scholar
Limon-Miro AT, Valencia ME, Lopez-Teros V, Guzman-Leon AE, Mendivil-Alvarado H, Astiazaran-Garcia H. Bioelectric impedance vector analysis (Biva) in breast cancer patients: A tool for research and clinical practice. Med. 2019;55:663. https://doi.org/10.3390/medicina55100663.Limon-MiroATValenciaMELopez-TerosVGuzman-LeonAEMendivil-AlvaradoHAstiazaran-GarciaHBioelectric impedance vector analysis (Biva) in breast cancer patients: A tool for research and clinical practiceMed201955663https://doi.org/10.3390/medicina55100663.Search in Google Scholar
Bello JLG, Lafargue AL, Ciria HC, Luna TB, Leyva YZ. Methodology for integrated analysis of vector- and spectroscopic bioimpedance methods. J. Electr. Bioimpedance. 2024;15:154–161. https://doi.org/10.2478/JOEB-2024-0018.BelloJLGLafargueALCiriaHCLunaTBLeyvaYZMethodology for integrated analysis of vector- and spectroscopic bioimpedance methodsJ. Electr. Bioimpedance202415154161https://doi.org/10.2478/JOEB-2024-0018.Search in Google Scholar
Koh DM, Papanikolaou N, Bick U, Illing R, Kahn CE, Kalpathi-Cramer J, et al. Artificial Intelligence and Machine Learning in Cancer Imaging. Commun Med. 2022;2(1):1–14. https://doi.org/10.1038/s43856-022-00199-0KohDMPapanikolaouNBickUIllingRKahnCEKalpathi-CramerJArtificial Intelligence and Machine Learning in Cancer ImagingCommun Med202221114https://doi.org/10.1038/s43856-022-00199-0Search in Google Scholar
Trivizakis E, Papadakis GZ, Souglakos I, Papanikolaou N, Koumakis L, Spandidos DA, et al. Artificial Intelligence Radiogenomics for Advancing Precision and Effectiveness in Oncologic Care (Review). Int J Oncol. 2020;57(1):43–53. https://doi.org/10.3892/ijo.2020.5063.TrivizakisEPapadakisGZSouglakosIPapanikolaouNKoumakisLSpandidosDAArtificial Intelligence Radiogenomics for Advancing Precision and Effectiveness in Oncologic Care (Review)Int J Oncol20205714353https://doi.org/10.3892/ijo.2020.5063.Search in Google Scholar
Luna TB, Bello JLG, Carbonell AG, Montoya A de la CR, Lafargue AL, Ciria HMC, Zulueta YA. The role of various physiological and bioelectrical parameters for estimating the weight status in infants and juveniles cohort from the Southern Cuba region: a machine learning study. BMC Pediatr. 2024;24:313. https://doi.org/10.1186/s12887-024-04789-w.LunaTBBelloJLGCarbonellAGMontoya A de laCRLafargueALCiriaHMCZuluetaYAThe role of various physiological and bioelectrical parameters for estimating the weight status in infants and juveniles cohort from the Southern Cuba region: a machine learning studyBMC Pediatr202424313https://doi.org/10.1186/s12887-024-04789-w.Search in Google Scholar
Luna TB, Bello JLG, Carbonell AG, Montoya A de la CR, Lafargue AL, Ciria HMC, Zulueta YA. Integrating classification and regression learners with bioimpedance methods for estimating weight status in infants and juveniles from the southern Cuba region. BMC Pediatr. 2024;24:1–17. https://doi.org/10.1186/s12887-024-04841-9.LunaTBBelloJLGCarbonellAGMontoya A de laCRLafargueALCiriaHMCZuluetaYAIntegrating classification and regression learners with bioimpedance methods for estimating weight status in infants and juveniles from the southern Cuba regionBMC Pediatr202424117https://doi.org/10.1186/s12887-024-04841-9.Search in Google Scholar
Bello JLG, Luna TB, Carbonell AG, Román Montoya A de la C, Lara Lafargue A, Ciria HMC, Zulueta YA. Cancer predictive model derived from bioimpedance measurements using machine learning methods. Clin. Nutr. Open Sci. 2024;58:131–145. https://doi.org/10.1016/j.nutos.2024.10.006.BelloJLGLunaTBCarbonellAGRomán Montoya A de laCLara LafargueACiriaHMCZuluetaYACancer predictive model derived from bioimpedance measurements using machine learning methodsClin. Nutr. Open Sci202458131145https://doi.org/10.1016/j.nutos.2024.10.006.Search in Google Scholar
Charilaou P, Battat R. Machine learning models and over-fitting considerations. World J Gastroenterol. 2022;28(5):605–607. https://doi.org/10.3748/wjg.v28.i5.605CharilaouPBattatRMachine learning models and over-fitting considerationsWorld J Gastroenterol2022285605607https://doi.org/10.3748/wjg.v28.i5.605Search in Google Scholar
Bagui S, Li K. Resampling imbalanced data for network intrusion detection datasets. J. Big Data. 2021;8:6. https://doi.org/10.1186/s40537-020-00390-x.BaguiSLiKResampling imbalanced data for network intrusion detection datasetsJ. Big Data202186https://doi.org/10.1186/s40537-020-00390-x.Search in Google Scholar
Chakraborty P, Rafiammal SS, Tharini C, Jamal DN. Influence of Bias and Variance in Selection of Machine Learning Classifiers for Biomedical Applications. In Smart Data Intelligence: Proceedings of ICSMDI 2022 (pp. 459–472). Singapore: Springer Nature. https://doi.org/10.1007/978-981-19-3311-0_39.ChakrabortyPRafiammalSSThariniCJamalDNInfluence of Bias and Variance in Selection of Machine Learning Classifiers for Biomedical ApplicationsInSmart Data Intelligence: Proceedings of ICSMDI 2022459472SingaporeSpringer Naturehttps://doi.org/10.1007/978-981-19-3311-0_39.Search in Google Scholar
He H, Ma Y. Imbalanced learning: Foundations, algorithms, and applications. Imbalanced Learn. Found. Algorithms, Appl. (2013) 1–210. https://doi.org/10.1002/9781118646106.HeHMaYImbalanced learning: Foundations, algorithms, and applicationsImbalanced Learn. Found. Algorithms, Appl.20131210https://doi.org/10.1002/9781118646106.Search in Google Scholar
Refaeilzadeh P, Tang L, Liu H. Cross-Validation. Encycl Database Syst. 2009:532–8. https://doi.org/10.1007/978-0-387-39940-9_565.RefaeilzadehPTangLLiuHCross-ValidationEncycl Database Syst.20095328https://doi.org/10.1007/978-0-387-39940-9_565.Search in Google Scholar
Arab A, Karimi E, Vingrys K, Shirani F. Is phase angle a valuable prognostic tool in cancer patients' survival? A systematic review and meta-analysis of available literature. Clin. Nutr. 2021;40:3182–3190. https://doi.org/10.1016/j.clnu.2021.01.027.ArabAKarimiEVingrysKShiraniFIs phase angle a valuable prognostic tool in cancer patients' survival? A systematic review and meta-analysis of available literatureClin. Nutr20214031823190https://doi.org/10.1016/j.clnu.2021.01.027.Search in Google Scholar
Axelsson L, Silander E, Bosaeus I, Hammerlid E. Bioelectrical phase angle at diagnosis as a prognostic factor for survival in advanced head and neck cancer. Eur. Arch. Oto-Rhino-Laryngology. 2018;275:2379–2386. https://doi.org/10.1007/s00405-018-5069-2.AxelssonLSilanderEBosaeusIHammerlidEBioelectrical phase angle at diagnosis as a prognostic factor for survival in advanced head and neck cancerEur. Arch. Oto-Rhino-Laryngology201827523792386https://doi.org/10.1007/s00405-018-5069-2.Search in Google Scholar
Amano K, Bruera E, Hui D. Diagnostic and prognostic utility of phase angle in patients with cancer. Rev. Endocr. Metab. Disord. 2023;24:479–489. https://doi.org/10.1007/s11154-022-09776-z.AmanoKBrueraEHuiDDiagnostic and prognostic utility of phase angle in patients with cancerRev. Endocr. Metab. Disord202324479489https://doi.org/10.1007/s11154-022-09776-z.Search in Google Scholar