Accesso libero

Predictive classification and regression models for bioimpedance vector analysis: Insights from a southern Cuban cohort

, , , , ,  e   
04 ago 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Alves EAS, Salazar TC do N, Silvino VO, Cardoso GA, dos Santos MAP. Association between phase angle and adverse clinical outcomes in hospitalized patients with COVID-19: A systematic review. Nutr Clin Pract. 2022;37:1105–1116. https://doi.org/10.1002/ncp.10901. AlvesEAS Salazar TC doN SilvinoVO CardosoGA dos SantosMAP Association between phase angle and adverse clinical outcomes in hospitalized patients with COVID-19: A systematic review Nutr Clin Pract 2022 37 1105 1116 https://doi.org/10.1002/ncp.10901. Search in Google Scholar

Bellido D, García-García C, Talluri A, Lukaski HC, García-Almeida JM. Future lines of research on phase angle: Strengths and limitations. Rev Endocr Metab Disord. 2023;24:563–83. https://doi.org/10.1007/s11154-023-09803-7. BellidoD García-GarcíaC TalluriA LukaskiHC García-AlmeidaJM Future lines of research on phase angle: Strengths and limitations Rev Endocr Metab Disord 2023 24 563 83 https://doi.org/10.1007/s11154-023-09803-7. Search in Google Scholar

Peng Z, Xu D, Li Y, Peng Y, Liu X. Phase Angle as a Comprehensive Tool for Nutritional Monitoring and Management in Patients with Crohn's Disease. Nutrients. 2022;14:2260. https://doi.org/10.3390/nu14112260. PengZ XuD LiY PengY LiuX Phase Angle as a Comprehensive Tool for Nutritional Monitoring and Management in Patients with Crohn's Disease Nutrients 2022 14 2260 https://doi.org/10.3390/nu14112260. Search in Google Scholar

Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, et al. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomater Sci Eng. 2021;7:1962–1986. https://doi.org/10.1021/acsbiomaterials.0c01570. StupinDD KuzinaEA AbelitAA EmelyanovAK NikolaevDM RyazantsevMN Bioimpedance Spectroscopy: Basics and Applications ACS Biomater Sci Eng 2021 7 1962 1986 https://doi.org/10.1021/acsbiomaterials.0c01570. Search in Google Scholar

Pérez-Morales R, Donate-Correa J, Martín-Núñez E, Pérez-Delgado N, Ferri C, López-Montes A, et al. Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients. Ren Fail. 2021;43:821–829. https://doi.org/10.1080/0886022X.2021.1922442. Pérez-MoralesR Donate-CorreaJ Martín-NúñezE Pérez-DelgadoN FerriC López-MontesA Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients Ren Fail 2021 43 821 829 https://doi.org/10.1080/0886022X.2021.1922442. Search in Google Scholar

Campa F, Gobbo LA, Stagi S, Cyrino LT, Toselli S, Marini E, et al. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur J Appl Physiol. 2022;122(3):561–589. https://doi.org/10.1007/s00421-021-04879-y. CampaF GobboLA StagiS CyrinoLT ToselliS MariniE Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes Eur J Appl Physiol 2022 122 3 561 589 https://doi.org/10.1007/s00421-021-04879-y. Search in Google Scholar

Carobbio ALC, Cheng Z, Gianiorio T, Missale F, Africano S, Ascoli A, et al. Electric Bioimpedance Sensing for the Detection of Head and Neck Squamous Cell Carcinoma. Diagnostics. 2023;13:2453. https://doi.org/10.3390/diagnostics13142453. CarobbioALC ChengZ GianiorioT MissaleF AfricanoS AscoliA Electric Bioimpedance Sensing for the Detection of Head and Neck Squamous Cell Carcinoma Diagnostics 2023 13 2453 https://doi.org/10.3390/diagnostics13142453. Search in Google Scholar

Schotman JM, Van Borren MM, Kooistra MP, Doorenbos CJ, de Boer H. Towards personalized hydration assessment in patients, based on measurement of total body electrical resistance: Back to basics. Clinical nutrition ESPEN. 2020;35:116–122. https://doi.org/10.1016/j.clnesp.2019.10.018. SchotmanJM Van BorrenMM KooistraMP DoorenbosCJ de BoerH Towards personalized hydration assessment in patients, based on measurement of total body electrical resistance: Back to basics Clinical nutrition ESPEN 2020 35 116 122 https://doi.org/10.1016/j.clnesp.2019.10.018. Search in Google Scholar

AlDisi R, Bader Q, Bermak A. Hydration Assessment Using the Bio-Impedance Analysis Method. Sensors. 2022;22(17):6350. https://doi.org/10.3390/s22176350. AlDisiR BaderQ BermakA Hydration Assessment Using the Bio-Impedance Analysis Method Sensors 2022 22 17 6350 https://doi.org/10.3390/s22176350. Search in Google Scholar

Karavetian M, Salhab N, Rizk R, Poulia KA. Malnutrition-inflammation score VS phase angle in the era of GLIM criteria: A cross-sectional study among hemodialysis patients in UAE. Nutrients. 2019;11. https://doi.org/10.3390/nu11112771. KaravetianM SalhabN RizkR PouliaKA Malnutrition-inflammation score VS phase angle in the era of GLIM criteria: A cross-sectional study among hemodialysis patients in UAE Nutrients 2019 11 https://doi.org/10.3390/nu11112771. Search in Google Scholar

Lukaski HC, García-Almeida JM. Phase angle in applications of bioimpedance in health and disease. Reviews in Endocrine and Metabolic Disorders. 2023;24(3):367–370. https://doi.org/10.1007/s11154-023-09799-0. LukaskiHC García-AlmeidaJM Phase angle in applications of bioimpedance in health and disease Reviews in Endocrine and Metabolic Disorders 2023 24 3 367 370 https://doi.org/10.1007/s11154-023-09799-0. Search in Google Scholar

Van der Sande FM, Van de Wal-Visscher ER, Stuard S, Moissl U, Kooman JP. Using bioimpedance spectroscopy to assess volume status in dialysis patients. Blood Purif. 2020; 49(1):178–184. https://doi.org/10.1159/000504079. Van der SandeFM Van de Wal-VisscherER StuardS MoisslU KoomanJP Using bioimpedance spectroscopy to assess volume status in dialysis patients Blood Purif 2020 49 1 178 184 https://doi.org/10.1159/000504079. Search in Google Scholar

Bello JLG, Luna TB, Lara Lafargue A, Ciria HMC, Zulueta YA, Bioimpedance formalism: A new approach for accessing the health status of cell and tissues, Bioelectrochemistry. 2024;160:108799. https://doi.org/10.1016/j.bioelechem.2024.108799. BelloJLG LunaTB Lara LafargueA CiriaHMC ZuluetaYA Bioimpedance formalism: A new approach for accessing the health status of cell and tissues Bioelectrochemistry 2024 160 108799 https://doi.org/10.1016/j.bioelechem.2024.108799. Search in Google Scholar

Chaunzwa TL, Qian JM, Li Q, Ricciuti B, Nuernberg L, Johnson JW, Weiss J, Zhang Z, MacKay J, Kagiampakis I, Bikiel D, Di Federico A, Alessi JV, Mak RH, Jacob E, Awad MM, Aerts HJWL. Body Composition in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy. JAMA Oncol. 2024;10:773–783. https://doi.org/10.1001/JAMAONCOL.2024.1120. ChaunzwaTL QianJM LiQ RicciutiB NuernbergL JohnsonJW WeissJ ZhangZ MacKayJ KagiampakisI BikielD Di FedericoA AlessiJV MakRH JacobE AwadMM AertsHJWL Body Composition in Advanced Non-Small Cell Lung Cancer Treated with Immunotherapy JAMA Oncol 2024 10 773 783 https://doi.org/10.1001/JAMAONCOL.2024.1120. Search in Google Scholar

Braun RP, Mangana J, Goldinger S, French L, Dummer R, Marghoob AA. Electrical Impedance Spectroscopy in Skin Cancer Diagnosis. Dermatol. Clin. 2017;35:489–493. https://doi.org/10.1016/j.det.2017.06.009. BraunRP ManganaJ GoldingerS FrenchL DummerR MarghoobAA Electrical Impedance Spectroscopy in Skin Cancer Diagnosis Dermatol. Clin 2017 35 489 493 https://doi.org/10.1016/j.det.2017.06.009. Search in Google Scholar

Baidillah MR, Riyanto R, Busono P, Karim S, Febryarto R, Astasari A, Sangaji D, Taruno WP. Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques. Measurement. 2024;226:114111. https://doi.org/10.1016/J.MEASUREMENT.2023.114111. BaidillahMR RiyantoR BusonoP KarimS FebryartoR AstasariA SangajiD TarunoWP Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques Measurement 2024 226 114111 https://doi.org/10.1016/J.MEASUREMENT.2023.114111. Search in Google Scholar

da Silva BR, Rufato S, Mialich MS, Cruz LP, Gozzo T, Jordão AA. Phase angle is related to oxidative stress and antioxidant biomarkers in breast cancer patients undergoing chemotherapy. PLoS One. 2023;18:e0283235. https://doi.org/10.1371/journal.pone.0283235. da SilvaBR RufatoS MialichMS CruzLP GozzoT JordãoAA Phase angle is related to oxidative stress and antioxidant biomarkers in breast cancer patients undergoing chemotherapy PLoS One 2023 18 e0283235 https://doi.org/10.1371/journal.pone.0283235. Search in Google Scholar

Jung M, Jeon JY, Yun GJ, Yang S, Kwon S, Seo YJ. Reference values of bioelectrical impedance analysis for detecting breast cancer-related lymphedema. Med. (United States). 2018;97:1–6. https://doi.org/10.1097/MD.0000000000012945. JungM JeonJY YunGJ YangS KwonS SeoYJ Reference values of bioelectrical impedance analysis for detecting breast cancer-related lymphedema Med. (United States) 2018 97 1 6 https://doi.org/10.1097/MD.0000000000012945. Search in Google Scholar

Mansouri S, Alhadidi T, Ben Azouz M. Breast cancer detection using low-frequency bioimpedance device. Breast Cancer Targets Ther. 2020;12:109–116. https://doi.org/10.2147/BCTT.S274421. MansouriS AlhadidiT Ben AzouzM Breast cancer detection using low-frequency bioimpedance device Breast Cancer Targets Ther 2020 12 109 116 https://doi.org/10.2147/BCTT.S274421. Search in Google Scholar

Aljarrah M, Salman F. A Simple Analysis of Impedance Spectroscopy: Review. J Inst Eng. 2021;102(1):237–242. https://doi.org/10.1007/s40033-021-00252-7. AljarrahM SalmanF A Simple Analysis of Impedance Spectroscopy: Review J Inst Eng 2021 102 1 237 242 https://doi.org/10.1007/s40033-021-00252-7. Search in Google Scholar

Pingel J, Harrison A, Von Walden F, Hjalmarsson E, Bartels EM. Multi-frequency bioimpedance: a non-invasive tool for muscle-health assessment of adults with cerebral palsy. J Muscle Res Cell Motil. 2020;41:211–219. https://doi.org/10.1007/s10974-020-09579-2. PingelJ HarrisonA Von WaldenF HjalmarssonE BartelsEM Multi-frequency bioimpedance: a non-invasive tool for muscle-health assessment of adults with cerebral palsy J Muscle Res Cell Motil 2020 41 211 219 https://doi.org/10.1007/s10974-020-09579-2. Search in Google Scholar

Kanoun O, Kallel AY, Nouri H, Atitallah BB, Haddad D, Hu Z, et al. Impedance spectroscopy: applications, advances and future trends. IEEE Instrumentation & Measurement Magazine. 2022;25(3):11–21. https://doi.org/10.1109/MIM.2022.9759355. KanounO KallelAY NouriH AtitallahBB HaddadD HuZ Impedance spectroscopy: applications, advances and future trends IEEE Instrumentation & Measurement Magazine 2022 25 3 11 21 https://doi.org/10.1109/MIM.2022.9759355. Search in Google Scholar

Wang LC, Raimann JG, Tao X, Preciado P, Thwin O, Rosales L, et al. Estimation of fluid status using three multifrequency bioimpedance methods in hemodialysis patients. Hemodial Int. 2022;26(4):575–587. https://doi.org/10.1111/hdi.13034. WangLC RaimannJG TaoX PreciadoP ThwinO RosalesL Estimation of fluid status using three multifrequency bioimpedance methods in hemodialysis patients Hemodial Int 2022 26 4 575 587 https://doi.org/10.1111/hdi.13034. Search in Google Scholar

Abasi S, Aggas JR, Garayar-Leyva GG, Walther BK, Guiseppi-Elie A. Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review. ACS Measurement Science. 2022;2(6):495–516. https://doi.org/10.1021/acsmeasuresciau.2c00033. AbasiS AggasJR Garayar-LeyvaGG WaltherBK Guiseppi-ElieA Bioelectrical Impedance Spectroscopy for Monitoring Mammalian Cells and Tissues under Different Frequency Domains: A Review ACS Measurement Science 2022 2 6 495 516 https://doi.org/10.1021/acsmeasuresciau.2c00033. Search in Google Scholar

Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Ellershaw J. The association of hydration status with physical signs, symptoms and survival in advanced cancer - The use of Bioelectrical Impedance Vector Analysis (BIVA) Technology to evaluate fluid volume in palliative care: An observational study. PLoS One. 2016;11:e0163114. https://doi.org/10.1371/journal.pone.0163114. NwosuAC MaylandCR MasonS CoxTF VarroA EllershawJ The association of hydration status with physical signs, symptoms and survival in advanced cancer - The use of Bioelectrical Impedance Vector Analysis (BIVA) Technology to evaluate fluid volume in palliative care: An observational study PLoS One 2016 11 e0163114 https://doi.org/10.1371/journal.pone.0163114. Search in Google Scholar

Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994;46:534–539. https://doi.org/10.1038/ki.1994.305. PiccoliA RossiB PillonL BuccianteG A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph Kidney Int 1994 46 534 539 https://doi.org/10.1038/ki.1994.305. Search in Google Scholar

Campa F, Toselli S. Bioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018;13:1250–1253. https://doi.org/10.1123/IJSPP.2018-0039. CampaF ToselliS Bioimpedance Vector Analysis of Elite, Subelite, and Low-Level Male Volleyball Players Int. J. Sports Physiol. Perform 2018 13 1250 1253 https://doi.org/10.1123/IJSPP.2018-0039. Search in Google Scholar

Martins PC, Gobbo LA, Silva DAS. Bioelectrical impedance vector analysis (BIVA) in university athletes. J. Int. Soc. Sports Nutr. 2021;18:1–8. https://doi.org/10.1186/S12970-020-00403-3/FIGURES/3. MartinsPC GobboLA SilvaDAS Bioelectrical impedance vector analysis (BIVA) in university athletes J. Int. Soc. Sports Nutr 2021 18 1 8 https://doi.org/10.1186/S12970-020-00403-3/FIGURES/3. Search in Google Scholar

Nwosu AC, Mayland CR, Mason S, Cox TF, Varro A, Stanley S, Ellershaw J. Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type. Clin. Nutr. ESPEN. 2019;30:59–66. https://doi.org/10.1016/j.clnesp.2019.02.006. NwosuAC MaylandCR MasonS CoxTF VarroA StanleyS EllershawJ Bioelectrical impedance vector analysis (BIVA) as a method to compare body composition differences according to cancer stage and type Clin. Nutr. ESPEN 2019 30 59 66 https://doi.org/10.1016/j.clnesp.2019.02.006. Search in Google Scholar

Limon-Miro AT, Valencia ME, Lopez-Teros V, Guzman-Leon AE, Mendivil-Alvarado H, Astiazaran-Garcia H. Bioelectric impedance vector analysis (Biva) in breast cancer patients: A tool for research and clinical practice. Med. 2019;55:663. https://doi.org/10.3390/medicina55100663. Limon-MiroAT ValenciaME Lopez-TerosV Guzman-LeonAE Mendivil-AlvaradoH Astiazaran-GarciaH Bioelectric impedance vector analysis (Biva) in breast cancer patients: A tool for research and clinical practice Med 2019 55 663 https://doi.org/10.3390/medicina55100663. Search in Google Scholar

Bello JLG, Lafargue AL, Ciria HC, Luna TB, Leyva YZ. Methodology for integrated analysis of vector- and spectroscopic bioimpedance methods. J. Electr. Bioimpedance. 2024;15:154–161. https://doi.org/10.2478/JOEB-2024-0018. BelloJLG LafargueAL CiriaHC LunaTB LeyvaYZ Methodology for integrated analysis of vector- and spectroscopic bioimpedance methods J. Electr. Bioimpedance 2024 15 154 161 https://doi.org/10.2478/JOEB-2024-0018. Search in Google Scholar

Koh DM, Papanikolaou N, Bick U, Illing R, Kahn CE, Kalpathi-Cramer J, et al. Artificial Intelligence and Machine Learning in Cancer Imaging. Commun Med. 2022;2(1):1–14. https://doi.org/10.1038/s43856-022-00199-0 KohDM PapanikolaouN BickU IllingR KahnCE Kalpathi-CramerJ Artificial Intelligence and Machine Learning in Cancer Imaging Commun Med 2022 2 1 1 14 https://doi.org/10.1038/s43856-022-00199-0 Search in Google Scholar

Trivizakis E, Papadakis GZ, Souglakos I, Papanikolaou N, Koumakis L, Spandidos DA, et al. Artificial Intelligence Radiogenomics for Advancing Precision and Effectiveness in Oncologic Care (Review). Int J Oncol. 2020;57(1):43–53. https://doi.org/10.3892/ijo.2020.5063. TrivizakisE PapadakisGZ SouglakosI PapanikolaouN KoumakisL SpandidosDA Artificial Intelligence Radiogenomics for Advancing Precision and Effectiveness in Oncologic Care (Review) Int J Oncol 2020 57 1 43 53 https://doi.org/10.3892/ijo.2020.5063. Search in Google Scholar

Luna TB, Bello JLG, Carbonell AG, Montoya A de la CR, Lafargue AL, Ciria HMC, Zulueta YA. The role of various physiological and bioelectrical parameters for estimating the weight status in infants and juveniles cohort from the Southern Cuba region: a machine learning study. BMC Pediatr. 2024;24:313. https://doi.org/10.1186/s12887-024-04789-w. LunaTB BelloJLG CarbonellAG Montoya A de laCR LafargueAL CiriaHMC ZuluetaYA The role of various physiological and bioelectrical parameters for estimating the weight status in infants and juveniles cohort from the Southern Cuba region: a machine learning study BMC Pediatr 2024 24 313 https://doi.org/10.1186/s12887-024-04789-w. Search in Google Scholar

Luna TB, Bello JLG, Carbonell AG, Montoya A de la CR, Lafargue AL, Ciria HMC, Zulueta YA. Integrating classification and regression learners with bioimpedance methods for estimating weight status in infants and juveniles from the southern Cuba region. BMC Pediatr. 2024;24:1–17. https://doi.org/10.1186/s12887-024-04841-9. LunaTB BelloJLG CarbonellAG Montoya A de laCR LafargueAL CiriaHMC ZuluetaYA Integrating classification and regression learners with bioimpedance methods for estimating weight status in infants and juveniles from the southern Cuba region BMC Pediatr 2024 24 1 17 https://doi.org/10.1186/s12887-024-04841-9. Search in Google Scholar

Bello JLG, Luna TB, Carbonell AG, Román Montoya A de la C, Lara Lafargue A, Ciria HMC, Zulueta YA. Cancer predictive model derived from bioimpedance measurements using machine learning methods. Clin. Nutr. Open Sci. 2024;58:131–145. https://doi.org/10.1016/j.nutos.2024.10.006. BelloJLG LunaTB CarbonellAG Román Montoya A de laC Lara LafargueA CiriaHMC ZuluetaYA Cancer predictive model derived from bioimpedance measurements using machine learning methods Clin. Nutr. Open Sci 2024 58 131 145 https://doi.org/10.1016/j.nutos.2024.10.006. Search in Google Scholar

Charilaou P, Battat R. Machine learning models and over-fitting considerations. World J Gastroenterol. 2022;28(5):605–607. https://doi.org/10.3748/wjg.v28.i5.605 CharilaouP BattatR Machine learning models and over-fitting considerations World J Gastroenterol 2022 28 5 605 607 https://doi.org/10.3748/wjg.v28.i5.605 Search in Google Scholar

Bagui S, Li K. Resampling imbalanced data for network intrusion detection datasets. J. Big Data. 2021;8:6. https://doi.org/10.1186/s40537-020-00390-x. BaguiS LiK Resampling imbalanced data for network intrusion detection datasets J. Big Data 2021 8 6 https://doi.org/10.1186/s40537-020-00390-x. Search in Google Scholar

Chakraborty P, Rafiammal SS, Tharini C, Jamal DN. Influence of Bias and Variance in Selection of Machine Learning Classifiers for Biomedical Applications. In Smart Data Intelligence: Proceedings of ICSMDI 2022 (pp. 459–472). Singapore: Springer Nature. https://doi.org/10.1007/978-981-19-3311-0_39. ChakrabortyP RafiammalSS ThariniC JamalDN Influence of Bias and Variance in Selection of Machine Learning Classifiers for Biomedical Applications In Smart Data Intelligence: Proceedings of ICSMDI 2022 459 472 Singapore Springer Nature https://doi.org/10.1007/978-981-19-3311-0_39. Search in Google Scholar

He H, Ma Y. Imbalanced learning: Foundations, algorithms, and applications. Imbalanced Learn. Found. Algorithms, Appl. (2013) 1–210. https://doi.org/10.1002/9781118646106. HeH MaY Imbalanced learning: Foundations, algorithms, and applications Imbalanced Learn. Found. Algorithms, Appl. 2013 1 210 https://doi.org/10.1002/9781118646106. Search in Google Scholar

Refaeilzadeh P, Tang L, Liu H. Cross-Validation. Encycl Database Syst. 2009:532–8. https://doi.org/10.1007/978-0-387-39940-9_565. RefaeilzadehP TangL LiuH Cross-Validation Encycl Database Syst. 2009 532 8 https://doi.org/10.1007/978-0-387-39940-9_565. Search in Google Scholar

Arab A, Karimi E, Vingrys K, Shirani F. Is phase angle a valuable prognostic tool in cancer patients' survival? A systematic review and meta-analysis of available literature. Clin. Nutr. 2021;40:3182–3190. https://doi.org/10.1016/j.clnu.2021.01.027. ArabA KarimiE VingrysK ShiraniF Is phase angle a valuable prognostic tool in cancer patients' survival? A systematic review and meta-analysis of available literature Clin. Nutr 2021 40 3182 3190 https://doi.org/10.1016/j.clnu.2021.01.027. Search in Google Scholar

Axelsson L, Silander E, Bosaeus I, Hammerlid E. Bioelectrical phase angle at diagnosis as a prognostic factor for survival in advanced head and neck cancer. Eur. Arch. Oto-Rhino-Laryngology. 2018;275:2379–2386. https://doi.org/10.1007/s00405-018-5069-2. AxelssonL SilanderE BosaeusI HammerlidE Bioelectrical phase angle at diagnosis as a prognostic factor for survival in advanced head and neck cancer Eur. Arch. Oto-Rhino-Laryngology 2018 275 2379 2386 https://doi.org/10.1007/s00405-018-5069-2. Search in Google Scholar

Amano K, Bruera E, Hui D. Diagnostic and prognostic utility of phase angle in patients with cancer. Rev. Endocr. Metab. Disord. 2023;24:479–489. https://doi.org/10.1007/s11154-022-09776-z. AmanoK BrueraE HuiD Diagnostic and prognostic utility of phase angle in patients with cancer Rev. Endocr. Metab. Disord 2023 24 479 489 https://doi.org/10.1007/s11154-022-09776-z. Search in Google Scholar