This work is licensed under the Creative Commons Attribution 4.0 International License.
Earthman C, Traughber D, Dobratz J and Howell W. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutrition in Clinical Practice 2007; 22:389–405. Available from: https://doi.org/10.1177/0115426507022004389EarthmanCTraughberDDobratzJHowellW.Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutrition in Clinical Practice2007; 22:389–405. Available from: https://doi.org/10.1177/0115426507022004389Search in Google Scholar
Marra M, Sammarco R, De Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, Donini LM, Santarpia L, Cataldi M, Pasanisi F et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast media & molecular imaging 2019; 2019. DOI: 10.1155/2019/3548284MarraMSammarcoRDe LorenzoAIellamoFSiervoMPietrobelliADoniniLMSantarpiaLCataldiMPasanisiFAssessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast media & molecular imaging2019; 2019. DOI: 10.1155/2019/3548284Open DOISearch in Google Scholar
Accardi AJ, Matsubara BS, Gaw RL, Daleiden-Burns A and Heywood JT. Clinical utility of fluid volume assessment in heart failure patients using bioimpedance spectroscopy. Frontiers in Cardiovascular Medicine 2021; 8:636718. DOI: 10.3389/fcvm.2021.636718. Available from: https://doi.org/10.3389/fcvm.2021.636718AccardiAJMatsubaraBSGawRLDaleiden-BurnsAHeywoodJT.Clinical utility of fluid volume assessment in heart failure patients using bioimpedance spectroscopy. Frontiers in Cardiovascular Medicine2021; 8:636718. DOI: 10.3389/fcvm.2021.636718. Available from: https://doi.org/10.3389/fcvm.2021.636718Open DOISearch in Google Scholar
Khin EE, Elmaghrabi AY, Alvarado LA, Modem V and Quigley R. Fluid balance assessment in pediatric hemodialysis patients by using whole-body bioimpedance spectroscopy (WB-BIS). Pediatric Nephrology 2022; 37:2449–56. DOI: 10.1007/s00467-022-05469-6KhinEEElmaghrabiAYAlvaradoLAModemVQuigleyR.Fluid balance assessment in pediatric hemodialysis patients by using whole-body bioimpedance spectroscopy (WB-BIS). Pediatric Nephrology2022; 37:2449–56. DOI: 10.1007/s00467-022-05469-6Open DOISearch in Google Scholar
Röthlingshöfer L, Ulbrich M, Hahne S and Leonhardt S. Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. Journal of Electrical Bioimpedance 2011; 2:79–85. DOI: 10.5617/jeb.178RöthlingshöferLUlbrichMHahneSLeonhardtS.Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. Journal of Electrical Bioimpedance2011; 2:79–85. DOI: 10.5617/jeb.178Open DOISearch in Google Scholar
Martinsen OG and Heiskanen A. Bioimpedance and bioelectricity basics. Elsevier, 2023MartinsenOGHeiskanenA.Bioimpedance and bioelectricity basics. Elsevier, 2023Search in Google Scholar
Alsanie S, Lim S and Wootton SA. Detecting low-intake dehydration using bioelectrical impedance analysis in older adults in acute care settings: a systematic review. BMC geriatrics 2022; 22:954. DOI: 10.1186/s12877-022-03589-0AlsanieSLimSWoottonSA.Detecting low-intake dehydration using bioelectrical impedance analysis in older adults in acute care settings: a systematic review. BMC geriatrics2022; 22:954. DOI: 10.1186/s12877-022-03589-0Open DOISearch in Google Scholar
Naranjo-Hernández D, Reina-Tosina J, Buendía R, Min M et al. Bioimpedance sensors: Instrumentation, models, and applications. 2019. Available from: https://doi.org/10.1155/2019/5078209Naranjo-HernándezDReina-TosinaJBuendíaRMinMBioimpedance sensors: Instrumentation, models, and applications. 2019. Available from: https://doi.org/10.1155/2019/5078209Search in Google Scholar
Lindeboom L, Lee S, Wieringa F, Groenendaal W, Basile C, Sande F van der and Kooman J. On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease. Nephrology Dialysis Transplantation 2022; 37:2048–54. DOI: 10.1093/ndt/gfab025LindeboomLLeeSWieringaFGroenendaalWBasileCSandeF van derKoomanJ.On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease. Nephrology Dialysis Transplantation2022; 37:2048–54. DOI: 10.1093/ndt/gfab025Open DOISearch in Google Scholar
Schoutteten MK, Lindeboom L, De Cannière H, Pieters Z, Bruckers L, Brys AD, Van der Heijden P, De Moor B, Peeters J, Van Hoof C et al. The Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients. Sensors 2024; 24:1890. DOI: 10.3390/s24061890SchouttetenMKLindeboomLDe CannièreHPietersZBruckersLBrysADVan der HeijdenPDe MoorBPeetersJVan HoofCThe Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients. Sensors2024; 24:1890. DOI: 10.3390/s24061890Open DOISearch in Google Scholar
Więch P, Wołoszyn F, Trojnar P, Skórka M and Bazaliński D. Does body position influence bioelectrical impedance? An observational pilot study. International Journal of Environmental Research and Public Health 2022; 19:9908. DOI: 10.3390/ijerph19169908WięchPWołoszynFTrojnarPSkórkaMBazalińskiD.Does body position influence bioelectrical impedance? An observational pilot study. International Journal of Environmental Research and Public Health2022; 19:9908. DOI: 10.3390/ijerph19169908Open DOISearch in Google Scholar
Zhu F, Schneditz D, Wang E and Levin NW. Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. Journal of applied physiology 1998; 85:497–504. DOI: 10.1152/jappl.1998.85.2.497ZhuFSchneditzDWangELevinNW.Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. Journal of applied physiology1998; 85:497–504. DOI: 10.1152/jappl.1998.85.2.497Open DOISearch in Google Scholar
Lee S, Squillace G, Smeets C, Vandecasteele M, Grieten L, De Francisco R and Van Hoof C. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2015:438–41. DOI: 10.1109/EMBC.2015.7318393LeeSSquillaceGSmeetsCVandecasteeleMGrietenLDe FranciscoRVan HoofC.Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2015:438–41. DOI: 10.1109/EMBC.2015.7318393Open DOISearch in Google Scholar
Bora DJ and Dasgupta R. Estimation of skin impedance models with experimental data and a proposed model for human skin impedance. IET Systems Biology 2020; 14:230–40. DOI: 10.1049/iet-syb.2020.0049BoraDJDasguptaR.Estimation of skin impedance models with experimental data and a proposed model for human skin impedance. IET Systems Biology2020; 14:230–40. DOI: 10.1049/iet-syb.2020.0049Open DOISearch in Google Scholar
Li L, Li X, Hu H, Shin H and Zhou P. The effect of subcutaneous fat on electrical impedance myography: Electrode configuration and multi-frequency analyses. PLoS One 2016; 11:e0156154. DOI: 10.1371/journal.pone.0156154LiLLiXHuHShinHZhouP.The effect of subcutaneous fat on electrical impedance myography: Electrode configuration and multi-frequency analyses. PLoS One2016; 11:e0156154. DOI: 10.1371/journal.pone.0156154Open DOISearch in Google Scholar
Sandby-Møller J, Poulsen T and Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta dermato-venereologica 2003; 83:410–3. DOI: 10.1080/00015550310015419Sandby-MøllerJPoulsenTWulfHC.Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta dermato-venereologica2003; 83:410–3. DOI: 10.1080/00015550310015419Open DOISearch in Google Scholar
Lintzeri D, Karimian N, Blume-Peytavi U and Kottner J. Epidermal thickness in healthy humans: a systematic review and meta-analysis. Journal of the European Academy of Dermatology and Venereology 2022; 36:1191–200. DOI: 10.1111/jdv.18123LintzeriDKarimianNBlume-PeytaviUKottnerJ.Epidermal thickness in healthy humans: a systematic review and meta-analysis. Journal of the European Academy of Dermatology and Venereology2022; 36:1191–200. DOI: 10.1111/jdv.18123Open DOISearch in Google Scholar
Chanda A and Singh G. Skin. Mechanical Properties of Human Tissues. Singapore: Springer Nature Singapore, 2023:13–23. DOI: 10.1007/978-981-99-2225-3_2. Available from: https://doi.org/10.1007/978-981-99-2225-3_2ChandaASinghG.Skin. Mechanical Properties of Human Tissues. Singapore: Springer Nature Singapore, 2023:13–23. DOI: 10.1007/978-981-99-2225-3_2. Available from: https://doi.org/10.1007/978-981-99-2225-3_2Open DOISearch in Google Scholar
Baidillah MR, Riyanto R, Busono P, Karim S, Febryarto R, Astasari A, Sangaji D and Taruno WP. Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques. Measurement 2024:114111. DOI: 10.1016/j.measurement.2023.114111BaidillahMRRiyantoRBusonoPKarimSFebryartoRAstasariASangajiDTarunoWP.Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques. Measurement2024:114111. DOI: 10.1016/j.measurement.2023.114111Open DOISearch in Google Scholar
L. A. Fenton IH and Carr DJ. Skin and skin simulants. Australian Journal of Forensic Sciences 2020; 52:96–106. DOI: 10.1080/00450618.2018.1450896. eprint: https://doi.org/10.1080/00450618.2018.1450896. Available from: https://doi.org/10.1080/00450618.2018.1450896L. A. FentonIHCarrDJ.Skin and skin simulants. Australian Journal of Forensic Sciences2020; 52:96–106. DOI: 10.1080/00450618.2018.1450896. eprint: https://doi.org/10.1080/00450618.2018.1450896. Available from: https://doi.org/10.1080/00450618.2018.1450896Open DOISearch in Google Scholar
Chanda A and Singh G. Mechanical properties of human tissues. Springer, 2023ChandaASinghG.Mechanical properties of human tissues. Springer, 2023Search in Google Scholar
Sung M, Spieker AJ, Narayanaswami P and Rutkove SB. The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance. Clinical Neurophysiology 2013; 124:400–4. DOI: 10.1016/j.clinph.2012.07.013SungMSpiekerAJNarayanaswamiPRutkoveSB.The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance. Clinical Neurophysiology2013; 124:400–4. DOI: 10.1016/j.clinph.2012.07.013Open DOISearch in Google Scholar
Tarulli A, Chin A, Lee K and Rutkove S. Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: an initial assessment. Clinical neurophysiology 2007; 118:2393–7. DOI: 10.1016/j.clinph.2007.07.016TarulliAChinALeeKRutkoveS.Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: an initial assessment. Clinical neurophysiology2007; 118:2393–7. DOI: 10.1016/j.clinph.2007.07.016Open DOISearch in Google Scholar
Hamilton-James K, Collet TH, Pichard C, Genton L and Dupertuis YM. Precision and accuracy of bioelectrical impedance analysis devices in supine versus standing position with or without retractable handle in Caucasian subjects. Clinical Nutrition ESPEN 2021; 45:267–74. DOI: 10.1016/j.clnesp.2021.08.010Hamilton-JamesKColletTHPichardCGentonLDupertuisYM.Precision and accuracy of bioelectrical impedance analysis devices in supine versus standing position with or without retractable handle in Caucasian subjects. Clinical Nutrition ESPEN2021; 45:267–74. DOI: 10.1016/j.clnesp.2021.08.010Open DOISearch in Google Scholar
Scharfetter H, Monif M, László Z, Lambauer T, Hutten H and Hinghofer-Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney international 1997; 51:1078–87. DOI: 10.1038/ki.1997.150ScharfetterHMonifMLászlóZLambauerTHuttenHHinghofer-SzalkayH.Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney international1997; 51:1078–87. DOI: 10.1038/ki.1997.150Open DOISearch in Google Scholar
Gibson A, Beam J, Alencar M, Zuhl M and Mermier C. Time course of supine and standing shifts in total body, intracellular and extracellular water for a sample of healthy adults. European journal of clinical nutrition 2015; 69:14–9. DOI: 10.1038/ejcn.2013.269GibsonABeamJAlencarMZuhlMMermierC.Time course of supine and standing shifts in total body, intracellular and extracellular water for a sample of healthy adults. European journal of clinical nutrition2015; 69:14–9. DOI: 10.1038/ejcn.2013.269Open DOISearch in Google Scholar
Lawler JC, Davis MJ and Griffith EC. Electrical characteristics of the skin: The impedance of the surface sheath and deep tissues. Journal of Investigative Dermatology 1960; 34:301–8. DOI: 10.1038/jid.1960.52LawlerJCDavisMJGriffithEC.Electrical characteristics of the skin: The impedance of the surface sheath and deep tissues. Journal of Investigative Dermatology1960; 34:301–8. DOI: 10.1038/jid.1960.52Open DOISearch in Google Scholar