Uneingeschränkter Zugang

Effect of body orientation and joint movement on local bioimpedance measurements

,  und   
05. Okt. 2024

Zitieren
COVER HERUNTERLADEN

Earthman C, Traughber D, Dobratz J and Howell W. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass. Nutrition in Clinical Practice 2007; 22:389–405. Available from: https://doi.org/10.1177/0115426507022004389 Earthman C Traughber D Dobratz J Howell W. Bioimpedance spectroscopy for clinical assessment of fluid distribution and body cell mass . Nutrition in Clinical Practice 2007 ; 22 : 389 405 . Available from: https://doi.org/10.1177/0115426507022004389 Search in Google Scholar

Marra M, Sammarco R, De Lorenzo A, Iellamo F, Siervo M, Pietrobelli A, Donini LM, Santarpia L, Cataldi M, Pasanisi F et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview. Contrast media & molecular imaging 2019; 2019. DOI: 10.1155/2019/3548284 Marra M Sammarco R De Lorenzo A Iellamo F Siervo M Pietrobelli A Donini LM Santarpia L Cataldi M Pasanisi F Assessment of body composition in health and disease using bioelectrical impedance analysis (BIA) and dual energy X-ray absorptiometry (DXA): a critical overview . Contrast media & molecular imaging 2019 ; 2019 . DOI: 10.1155/2019/3548284 Open DOISearch in Google Scholar

Accardi AJ, Matsubara BS, Gaw RL, Daleiden-Burns A and Heywood JT. Clinical utility of fluid volume assessment in heart failure patients using bioimpedance spectroscopy. Frontiers in Cardiovascular Medicine 2021; 8:636718. DOI: 10.3389/fcvm.2021.636718. Available from: https://doi.org/10.3389/fcvm.2021.636718 Accardi AJ Matsubara BS Gaw RL Daleiden-Burns A Heywood JT. Clinical utility of fluid volume assessment in heart failure patients using bioimpedance spectroscopy . Frontiers in Cardiovascular Medicine 2021 ; 8 : 636718 . DOI: 10.3389/fcvm.2021.636718 . Available from: https://doi.org/10.3389/fcvm.2021.636718 Open DOISearch in Google Scholar

Khin EE, Elmaghrabi AY, Alvarado LA, Modem V and Quigley R. Fluid balance assessment in pediatric hemodialysis patients by using whole-body bioimpedance spectroscopy (WB-BIS). Pediatric Nephrology 2022; 37:2449–56. DOI: 10.1007/s00467-022-05469-6 Khin EE Elmaghrabi AY Alvarado LA Modem V Quigley R. Fluid balance assessment in pediatric hemodialysis patients by using whole-body bioimpedance spectroscopy (WB-BIS) . Pediatric Nephrology 2022 ; 37 : 2449 56 . DOI: 10.1007/s00467-022-05469-6 Open DOISearch in Google Scholar

Röthlingshöfer L, Ulbrich M, Hahne S and Leonhardt S. Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations. Journal of Electrical Bioimpedance 2011; 2:79–85. DOI: 10.5617/jeb.178 Röthlingshöfer L Ulbrich M Hahne S Leonhardt S. Monitoring change of body fluid during physical exercise using bioimpedance spectroscopy and finite element simulations . Journal of Electrical Bioimpedance 2011 ; 2 : 79 85 . DOI: 10.5617/jeb.178 Open DOISearch in Google Scholar

Martinsen OG and Heiskanen A. Bioimpedance and bioelectricity basics. Elsevier, 2023 Martinsen OG Heiskanen A. Bioimpedance and bioelectricity basics . Elsevier , 2023 Search in Google Scholar

Alsanie S, Lim S and Wootton SA. Detecting low-intake dehydration using bioelectrical impedance analysis in older adults in acute care settings: a systematic review. BMC geriatrics 2022; 22:954. DOI: 10.1186/s12877-022-03589-0 Alsanie S Lim S Wootton SA. Detecting low-intake dehydration using bioelectrical impedance analysis in older adults in acute care settings: a systematic review . BMC geriatrics 2022 ; 22 : 954 . DOI: 10.1186/s12877-022-03589-0 Open DOISearch in Google Scholar

Naranjo-Hernández D, Reina-Tosina J, Buendía R, Min M et al. Bioimpedance sensors: Instrumentation, models, and applications. 2019. Available from: https://doi.org/10.1155/2019/5078209 Naranjo-Hernández D Reina-Tosina J Buendía R Min M Bioimpedance sensors: Instrumentation, models, and applications . 2019 . Available from: https://doi.org/10.1155/2019/5078209 Search in Google Scholar

Lindeboom L, Lee S, Wieringa F, Groenendaal W, Basile C, Sande F van der and Kooman J. On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease. Nephrology Dialysis Transplantation 2022; 37:2048–54. DOI: 10.1093/ndt/gfab025 Lindeboom L Lee S Wieringa F Groenendaal W Basile C Sande F van der Kooman J. On the potential of wearable bioimpedance for longitudinal fluid monitoring in end-stage kidney disease . Nephrology Dialysis Transplantation 2022 ; 37 : 2048 54 . DOI: 10.1093/ndt/gfab025 Open DOISearch in Google Scholar

Schoutteten MK, Lindeboom L, De Cannière H, Pieters Z, Bruckers L, Brys AD, Van der Heijden P, De Moor B, Peeters J, Van Hoof C et al. The Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients. Sensors 2024; 24:1890. DOI: 10.3390/s24061890 Schoutteten MK Lindeboom L De Cannière H Pieters Z Bruckers L Brys AD Van der Heijden P De Moor B Peeters J Van Hoof C The Feasibility of Semi-Continuous and Multi-Frequency Thoracic Bioimpedance Measurements by a Wearable Device during Fluid Changes in Hemodialysis Patients . Sensors 2024 ; 24 : 1890 . DOI: 10.3390/s24061890 Open DOISearch in Google Scholar

Więch P, Wołoszyn F, Trojnar P, Skórka M and Bazaliński D. Does body position influence bioelectrical impedance? An observational pilot study. International Journal of Environmental Research and Public Health 2022; 19:9908. DOI: 10.3390/ijerph19169908 Więch P Wołoszyn F Trojnar P Skórka M Bazaliński D. Does body position influence bioelectrical impedance? An observational pilot study . International Journal of Environmental Research and Public Health 2022 ; 19 : 9908 . DOI: 10.3390/ijerph19169908 Open DOISearch in Google Scholar

Zhu F, Schneditz D, Wang E and Levin NW. Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. Journal of applied physiology 1998; 85:497–504. DOI: 10.1152/jappl.1998.85.2.497 Zhu F Schneditz D Wang E Levin NW. Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis . Journal of applied physiology 1998 ; 85 : 497 504 . DOI: 10.1152/jappl.1998.85.2.497 Open DOISearch in Google Scholar

Lee S, Squillace G, Smeets C, Vandecasteele M, Grieten L, De Francisco R and Van Hoof C. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2015:438–41. DOI: 10.1109/EMBC.2015.7318393 Lee S Squillace G Smeets C Vandecasteele M Grieten L De Francisco R Van Hoof C. Congestive heart failure patient monitoring using wearable Bio-impedance sensor technology . 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . IEEE . 2015 : 438 41 . DOI: 10.1109/EMBC.2015.7318393 Open DOISearch in Google Scholar

Bora DJ and Dasgupta R. Estimation of skin impedance models with experimental data and a proposed model for human skin impedance. IET Systems Biology 2020; 14:230–40. DOI: 10.1049/iet-syb.2020.0049 Bora DJ Dasgupta R. Estimation of skin impedance models with experimental data and a proposed model for human skin impedance . IET Systems Biology 2020 ; 14 : 230 40 . DOI: 10.1049/iet-syb.2020.0049 Open DOISearch in Google Scholar

Li L, Li X, Hu H, Shin H and Zhou P. The effect of subcutaneous fat on electrical impedance myography: Electrode configuration and multi-frequency analyses. PLoS One 2016; 11:e0156154. DOI: 10.1371/journal.pone.0156154 Li L Li X Hu H Shin H Zhou P. The effect of subcutaneous fat on electrical impedance myography: Electrode configuration and multi-frequency analyses . PLoS One 2016 ; 11 : e0156154 . DOI: 10.1371/journal.pone.0156154 Open DOISearch in Google Scholar

Sandby-Møller J, Poulsen T and Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta dermato-venereologica 2003; 83:410–3. DOI: 10.1080/00015550310015419 Sandby-Møller J Poulsen T Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits . Acta dermato-venereologica 2003 ; 83 : 410 3 . DOI: 10.1080/00015550310015419 Open DOISearch in Google Scholar

Lintzeri D, Karimian N, Blume-Peytavi U and Kottner J. Epidermal thickness in healthy humans: a systematic review and meta-analysis. Journal of the European Academy of Dermatology and Venereology 2022; 36:1191–200. DOI: 10.1111/jdv.18123 Lintzeri D Karimian N Blume-Peytavi U Kottner J. Epidermal thickness in healthy humans: a systematic review and meta-analysis . Journal of the European Academy of Dermatology and Venereology 2022 ; 36 : 1191 200 . DOI: 10.1111/jdv.18123 Open DOISearch in Google Scholar

Chanda A and Singh G. Skin. Mechanical Properties of Human Tissues. Singapore: Springer Nature Singapore, 2023:13–23. DOI: 10.1007/978-981-99-2225-3_2. Available from: https://doi.org/10.1007/978-981-99-2225-3_2 Chanda A Singh G. Skin . Mechanical Properties of Human Tissues . Singapore : Springer Nature Singapore , 2023 : 13 23 . DOI: 10.1007/978-981-99-2225-3_2 . Available from: https://doi.org/10.1007/978-981-99-2225-3_2 Open DOISearch in Google Scholar

Baidillah MR, Riyanto R, Busono P, Karim S, Febryarto R, Astasari A, Sangaji D and Taruno WP. Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques. Measurement 2024:114111. DOI: 10.1016/j.measurement.2023.114111 Baidillah MR Riyanto R Busono P Karim S Febryarto R Astasari A Sangaji D Taruno WP. Electrical impedance spectroscopy for skin layer assessment: A scoping review of electrode design, measurement methods, and post-processing techniques . Measurement 2024 : 114111 . DOI: 10.1016/j.measurement.2023.114111 Open DOISearch in Google Scholar

L. A. Fenton IH and Carr DJ. Skin and skin simulants. Australian Journal of Forensic Sciences 2020; 52:96–106. DOI: 10.1080/00450618.2018.1450896. eprint: https://doi.org/10.1080/00450618.2018.1450896. Available from: https://doi.org/10.1080/00450618.2018.1450896 L. A. Fenton IH Carr DJ. Skin and skin simulants . Australian Journal of Forensic Sciences 2020 ; 52 : 96 106 . DOI: 10.1080/00450618.2018.1450896 . eprint: https://doi.org/10.1080/00450618.2018.1450896 . Available from: https://doi.org/10.1080/00450618.2018.1450896 Open DOISearch in Google Scholar

Chanda A and Singh G. Mechanical properties of human tissues. Springer, 2023 Chanda A Singh G. Mechanical properties of human tissues . Springer , 2023 Search in Google Scholar

Sung M, Spieker AJ, Narayanaswami P and Rutkove SB. The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance. Clinical Neurophysiology 2013; 124:400–4. DOI: 10.1016/j.clinph.2012.07.013 Sung M Spieker AJ Narayanaswami P Rutkove SB. The effect of subcutaneous fat on electrical impedance myography when using a handheld electrode array: the case for measuring reactance . Clinical Neurophysiology 2013 ; 124 : 400 4 . DOI: 10.1016/j.clinph.2012.07.013 Open DOISearch in Google Scholar

Tarulli A, Chin A, Lee K and Rutkove S. Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: an initial assessment. Clinical neurophysiology 2007; 118:2393–7. DOI: 10.1016/j.clinph.2007.07.016 Tarulli A Chin A Lee K Rutkove S. Impact of skin-subcutaneous fat layer thickness on electrical impedance myography measurements: an initial assessment . Clinical neurophysiology 2007 ; 118 : 2393 7 . DOI: 10.1016/j.clinph.2007.07.016 Open DOISearch in Google Scholar

Hamilton-James K, Collet TH, Pichard C, Genton L and Dupertuis YM. Precision and accuracy of bioelectrical impedance analysis devices in supine versus standing position with or without retractable handle in Caucasian subjects. Clinical Nutrition ESPEN 2021; 45:267–74. DOI: 10.1016/j.clnesp.2021.08.010 Hamilton-James K Collet TH Pichard C Genton L Dupertuis YM. Precision and accuracy of bioelectrical impedance analysis devices in supine versus standing position with or without retractable handle in Caucasian subjects . Clinical Nutrition ESPEN 2021 ; 45 : 267 74 . DOI: 10.1016/j.clnesp.2021.08.010 Open DOISearch in Google Scholar

Scharfetter H, Monif M, László Z, Lambauer T, Hutten H and Hinghofer-Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney international 1997; 51:1078–87. DOI: 10.1038/ki.1997.150 Scharfetter H Monif M László Z Lambauer T Hutten H Hinghofer-Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data . Kidney international 1997 ; 51 : 1078 87 . DOI: 10.1038/ki.1997.150 Open DOISearch in Google Scholar

Gibson A, Beam J, Alencar M, Zuhl M and Mermier C. Time course of supine and standing shifts in total body, intracellular and extracellular water for a sample of healthy adults. European journal of clinical nutrition 2015; 69:14–9. DOI: 10.1038/ejcn.2013.269 Gibson A Beam J Alencar M Zuhl M Mermier C. Time course of supine and standing shifts in total body, intracellular and extracellular water for a sample of healthy adults . European journal of clinical nutrition 2015 ; 69 : 14 9 . DOI: 10.1038/ejcn.2013.269 Open DOISearch in Google Scholar

Lawler JC, Davis MJ and Griffith EC. Electrical characteristics of the skin: The impedance of the surface sheath and deep tissues. Journal of Investigative Dermatology 1960; 34:301–8. DOI: 10.1038/jid.1960.52 Lawler JC Davis MJ Griffith EC. Electrical characteristics of the skin: The impedance of the surface sheath and deep tissues . Journal of Investigative Dermatology 1960 ; 34 : 301 8 . DOI: 10.1038/jid.1960.52 Open DOISearch in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Biomedizinische Elektronik, Biologie, Biophysik, Medizin, Biomedizinische Technik, Physik, Spektroskopie und Metrologie