Cite

S. Romiti, M. Vinciguerra, W. Saade, I. Anso Cortajarena, and E. Greco, “Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance,” Cardiol. Res. Pract., vol. 2020, no. Ml, 2020, https://doi.org/10.1155/2020/4972346. Romiti S. Vinciguerra M. Saade W. Anso Cortajarena I. and Greco E. “Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance,” Cardiol. Res. Pract vol. 2020 no. Ml 2020 https://doi.org/10.1155/2020/4972346.10.1155/2020/4972346733620932676206Search in Google Scholar

“Cardiovascular diseases (CVDs).” https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)(accessed Aug. 03, 2022). “Cardiovascular diseases (CVDs).” https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)(accessed Aug. 03, 2022)Search in Google Scholar

S. Ghosh, B. P. Chattopadhyay, R. M. Roy, J. Mukherjee, and M. Mahadevappa, “Estimation of echocardiogram parameters with the aid of impedance cardiography and artificial neural networks,” Artif. Intell. Med., vol. 96, pp. 45–58, May 2019, https://doi.org/10.1016/J.ARTMED.2019.02.002. Ghosh S. Chattopadhyay B. P. Roy R. M. Mukherjee J. and Mahadevappa M. “Estimation of echocardiogram parameters with the aid of impedance cardiography and artificial neural networks,” Artif. Intell. Med vol. 96 pp 4558 May 2019 https://doi.org/10.1016/J.ARTMED.2019.02.002.10.1016/j.artmed.2019.02.00231164210Search in Google Scholar

“Coronary heart disease - Diagnosis - NHS.” https://www.nhs.uk/conditions/coronary-heart-disease/diagnosis/ (accessed Aug. 19, 2022). “Coronary heart disease - Diagnosis - NHS.” https://www.nhs.uk/conditions/coronary-heart-disease/diagnosis/ (accessed Aug. 19, 2022)Search in Google Scholar

“Five medical devices used for the early detection of heart disease.” https://www.nsmedicaldevices.com/analysis/heart-disease-detection-devices/# (accessed Aug. 19, 2022). “Five medical devices used for the early detection of heart disease.” https://www.nsmedicaldevices.com/analysis/heart-disease-detection-devices/# (accessed Aug. 19, 2022)Search in Google Scholar

H. BENABDALLAH and S. Kerai, “The impedance cardiography technique in medical diagnosis,” Med. Technol. J., vol. 2, no. 3, pp. 232–244, 2018, https://doi.org/10.26415/2572-004x-vol2iss3p232-244. BENABDALLAH H. and Kerai S. “The impedance cardiography technique in medical diagnosis,” Med. Technol. J vol. 2 no. 3 pp 232 244 2018 https://doi.org/10.26415/2572-004x-vol2iss3p232-244.10.26415/2572-004X-vol2iss3p232-244Search in Google Scholar

D. Naranjo-Hernández, J. Reina-Tosina, and M. Min, “Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications,” J. Sensors, vol. 2019, 2019, https://doi.org/10.1155/2019/9210258. Naranjo-Hernández D. Reina-Tosina J. and Min M. “Fundamentals, recent advances, and future challenges in bioimpedance devices for healthcare applications,” J. Sensors vol. 2019 2019 https://doi.org/10.1155/2019/9210258.10.1155/2019/9210258Search in Google Scholar

S. Benouar, A. Hafid, M. Attari, M. Kedir-Talha, and F. Seoane, “Systematic Variability in ICG Recordings Results in ICG Complex Subtypes – Steps Towards the Enhancement of ICG Characterization,” J. Electr. Bioimpedance, vol. 9, no. 1, p. 72, Nov. 2018, https://doi.org/10.2478/JOEB-2018-0012. Benouar S. Hafid A. Attari M. Kedir-Talha M. and Seoane F. “Systematic Variability in ICG Recordings Results in ICG Complex Subtypes – Steps Towards the Enhancement of ICG Characterization,” J. Electr. Bioimpedance vol. 9 no. 1 p 72 Nov 2018 https://doi.org/10.2478/JOEB-2018-0012.10.2478/joeb-2018-0012785201833584923Search in Google Scholar

S. Mansouri, “Determination of Cardiac Output by Peripheral Electrical Bioimpedance,” IEEJ Trans. Electr. Electron. Eng., vol. 15, no. 9, pp. 1321–1326, Sep. 2020, https://doi.org/10.1002/tee.23199. Mansouri S. “Determination of Cardiac Output by Peripheral Electrical Bioimpedance,” IEEJ Trans. Electr. Electron. Eng vol. 15 no. 9 pp 1321 1326 Sep 2020 https://doi.org/10.1002/tee.23199.10.1002/tee.23199Search in Google Scholar

S. Chabchoub, S. Mansouri, and R. Ben Salah, “Detection of valvular heart diseases using impedance cardiography ICG,” Biocybern. Biomed. Eng., vol. 38, no. 2, pp. 251–261, 2018, https://doi.org/10.1016/j.bbe.2017.12.002. Chabchoub S. Mansouri S. and Ben Salah R. “Detection of valvular heart diseases using impedance cardiography ICG,” Biocybern. Biomed. Eng vol. 38 no. 2 pp 251 261 2018 https://doi.org/10.1016/j.bbe.2017.12.002.10.1016/j.bbe.2017.12.002Search in Google Scholar

Lababid Z, Ehmke DA, Durnin RE, Leaverton PE, Lauer RM. The first derivative thoracic impedance cardiogram. Circulation 1970; 41:651–8. American Heart Association. Lababid Z Ehmke DA Durnin RE Leaverton PE Lauer RM The first derivative thoracic impedance cardiogram Circulation 1970 41651 8 American Heart Association10.1161/01.CIR.41.4.6515437409Search in Google Scholar

S. Mansouri, T. Alhadidi, S. Chabchoub, and R. Ben Salah, “Impedance cardiography: recent applications and developments,” Biomed. Res., vol. 29, no. 19, pp. 3542–3552, 2018, https://doi.org/10.4066/BIOMEDICALRESEARCH.29-17-3479. Mansouri S. Alhadidi T. Chabchoub S. and Ben Salah R. “Impedance cardiography: recent applications and developments,” Biomed. Res vol. 29 no. 19 pp 35423552 2018 https://doi.org/10.4066/BIOMEDICALRESEARCH.29-17-3479.10.4066/biomedicalresearch.29-17-3479Search in Google Scholar

S. Mansouri, S. Chabchoub, Y. Alharbi, A. Alshrouf, and J. Nebhen, “A Real-Time Heart Rate Detection Algorithm Based on Peripheral Electrical Bioimpedance,” IEEJ Trans. Electr. Electron. Eng., vol. 17, no. 7, pp. 1054–1060, Jul. 2022, https://doi.org/10.1002/TEE.23595. Mansouri S. Chabchoub S. Alharbi Y. Alshrouf A. and Nebhen J. “A Real-Time Heart Rate Detection Algorithm Based on Peripheral Electrical Bioimpedance,” IEEJ Trans. Electr. Electron. Eng vol. 17 no. 7 pp 1054 1060 Jul 2022 https://doi.org/10.1002/TEE.23595.10.1002/tee.23595Search in Google Scholar

“CardioDynamics BioZ ICG Hemodynamic Monitor - Elite Medical Equipment Inc.” https://elitemedicalmall.com/product/cardiodynamics-biozicg-hemodynamic-monitor/ (accessed Aug. 19, 2022). “CardioDynamics BioZ ICG Hemodynamic Monitor - Elite Medical Equipment Inc.” https://elitemedicalmall.com/product/cardiodynamics-biozicg-hemodynamic-monitor/ (accessed Aug. 19, 2022)Search in Google Scholar

“NICaS | NI Medical.” https://www.ni-medical.com/solutions/nicas/ (accessed Aug. 19, 2022). “NICaS | NI Medical.” https://www.ni-medical.com/solutions/nicas/ (accessed Aug. 19, 2022)Search in Google Scholar

Niccomo by Medis GmbH.” https://www.selectscience.net/products/niccomo/?prodID=210013. (accessed Dec. 15, 2022). Niccomo by Medis GmbH.” https://www.selectscience.net/products/niccomo/?prodID=210013. (accessed Dec. 15, 2022)Search in Google Scholar

“PhysioFlow, the new reference in Cardiac Output Monitoring and Hemodynamics Measurement.” https://physioflow.com/ (accessed Aug. 19, 2022). “PhysioFlow the new reference in Cardiac Output Monitoring and Hemodynamics Measurement.” https://physioflow.com/ (accessed Aug. 19, 2022)Search in Google Scholar

“IFM HIC-2000 Product Info.” http://www.microtronics-nc.com/BIT/HICProductInfoX.html (accessed Aug. 20, 2022). “IFM HIC-2000 Product Info.” http://www.microtronics-nc.com/BIT/HICProductInfoX.html (accessed Aug. 20, 2022)Search in Google Scholar

“Medical Technology │ OSYPKA MEDICAL GmbH.” https://www.osypkamed.com/ (accessed Aug. 19, 2022). “Medical Technology │ OSYPKA MEDICAL GmbH.” https://www.osypkamed.com/ (accessed Aug. 19, 2022)Search in Google Scholar

“CardioScreen 2000: device for Impedance-Cardiography (ICG) - medis. GmbH.” https://www.medis.company/en/products/cardioscreen-2000 (accessed Aug. 19, 2022). “CardioScreen 2000: device for Impedance-Cardiography (ICG) - medis. GmbH.” https://www.medis.company/en/products/cardioscreen-2000 (accessed Aug. 19, 2022)Search in Google Scholar

“CardioScreen 1000: device for Impedance-Cardiography (ICG) - medis. GmbH.” https://www.medis.company/en/products/cardioscreen-1000 (accessed Aug. 19, 2022). “CardioScreen 1000: device for Impedance-Cardiography (ICG) - medis. GmbH.” https://www.medis.company/en/products/cardioscreen-1000 (accessed Aug. 19, 2022)Search in Google Scholar

R. Nazário Leão, P. M. Da Silva, R. M. Pocinho, M. Alves, D. Virella, and R. Palma Reis, “Good agreement between echocardiography and impedance cardiography in the assessment of left ventricular performance in hypertensive patients,” Clin. Exp. Hypertens., vol. 40, no. 5, pp. 461–467, Jul. 2018, https://doi.org/10.1080/10641963.2017.1392558. Nazário Leão R. Da Silva P. M. Pocinho R. M. Alves M. Virella D. and Palma Reis R. “Good agreement between echocardiography and impedance cardiography in the assessment of left ventricular performance in hypertensive patients,” Clin. Exp. Hypertens vol. 40 no. 5 pp 461 467 Jul 2018 https://doi.org/10.1080/10641963.2017.1392558.10.1080/10641963.2017.139255829172784Search in Google Scholar

L. E et al., “Accuracy of impedance cardiography for evaluating trends in cardiac output: a comparison with oesophageal Doppler,” Br. J. Anaesth., vol. 113, no. 4, pp. 596–602, Oct. 2014, https://doi.org/10.1093/BJA/AEU136. L. E et al “Accuracy of impedance cardiography for evaluating trends in cardiac output: a comparison with oesophageal Doppler,” Br. J. Anaesth vol. 113 no. 4 pp 596 602 Oct 2014 https://doi.org/10.1093/BJA/AEU136.10.1093/bja/aeu13624871872Search in Google Scholar

M. Panagiotou et al., “Validation of impedance cardiography in pulmonary arterial hypertension,” Clin. Physiol. Funct. Imaging, vol. 38, no. 2, pp. 254–260, Mar. 2018, https://doi.org/10.1111/CPF.12408. Panagiotou M. et al “Validation of impedance cardiography in pulmonary arterial hypertension,” Clin. Physiol. Funct. Imaging vol. 38 no. 2 pp 254 260 Mar 2018 https://doi.org/10.1111/CPF.12408.10.1111/cpf.1240828168802Search in Google Scholar

V. Malik, A. Subramanian, S. Chauhan, and M. Hote, “Correlation of Electric Cardiometry and Continuous Thermodilution Cardiac Output Monitoring Systems,” World J. Cardiovasc. Surg., vol. 2014, no. 07, pp. 101–108, Jul. 2014, https://doi.org/10.4236/WJCS.2014.47016. Malik V. Subramanian A. Chauhan S. and Hote M. “Correlation of Electric Cardiometry and Continuous Thermodilution Cardiac Output Monitoring Systems,” World J. Cardiovasc. Surg vol. 2014 no. 07 pp 101 108 Jul 2014 https://doi.org/10.4236/WJCS.2014.47016.10.4236/wjcs.2014.47016Search in Google Scholar

M. Engoren and D. Barbee, “Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method.,” Am. J. Crit. care an Off. Publ. Am. Assoc. Crit. Nurses, vol. 14, no. 1, pp. 40–45, Jan. 2005. Engoren M. and Barbee D. “Comparison of cardiac output determined by bioimpedance, thermodilution, and the Fick method.,” Am. J. Crit. care an Off. Publ. Am. Assoc. Crit. Nurses vol. 14 no. 1 pp 40 45 Jan 200510.4037/ajcc2005.14.1.40Search in Google Scholar

A. Hafid, S. Benouar, M. Kedir-Talha, M. Attari, and F. Seoane, “Simultaneous recording of ICG and ECG using Z-RPI device with minimum number of electrodes,” J. Sensors, vol. 2018, 2018, https://doi.org/10.1155/2018/3269534. Hafid A. Benouar S. Kedir-Talha M. Attari M. and Seoane F. “Simultaneous recording of ICG and ECG using Z-RPI device with minimum number of electrodes,” J. Sensors vol. 2018 2018 https://doi.org/10.1155/2018/3269534.10.1155/2018/3269534Search in Google Scholar

P. Stevanović, “Thoracic electrical bioimpedance theory and clinical possibilities in per operative medicine,” Anaesthesiol. Intensive Care, vol. 39, no. 1, pp. 4–7, 2009, https://doi.org/10.22514/SV31.022008.5/HTM. Stevanović P. “Thoracic electrical bioimpedance theory and clinical possibilities in per operative medicine,” Anaesthesiol. Intensive Care vol. 39 no. 1 pp 4 7 2009 https://doi.org/10.22514/SV31.022008.5/HTM.Search in Google Scholar

F. Heydari, M. P. Ebrahim, and M. R. Yuce, “Chest-based Real-Time Pulse and Respiration Monitoring Based on Bio-Impedance,” Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf., vol. 2020, pp. 4398–4401, Jul. 2020, https://doi.org/10.1109/EMBC44109.2020.9176348. Heydari F. Ebrahim M. P. and Yuce M. R. “Chest-based Real-Time Pulse and Respiration Monitoring Based on Bio-Impedance,” Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Int. Conf vol. 2020 pp 43984401 Jul 2020 https://doi.org/10.1109/EMBC44109.2020.9176348.10.1109/EMBC44109.2020.917634833018970Search in Google Scholar

P. J. Nestel et al., “Isoflavones from Red Clover Improve Systemic Arterial Compliance But Not Plasma Lipids in Menopausal Women*,” 1999. [Online]. Available: https://academic.oup.com/jcem/article/84/3/895/2864128. Nestel P. J. et al “Isoflavones from Red Clover Improve Systemic Arterial Compliance But Not Plasma Lipids in Menopausal Women*,” 1999 [Online]. Available: https://academic.oup.com/jcem/article/84/3/895/2864128.10.1210/jc.84.3.895Search in Google Scholar

J. N. Cohn, “Arterial compliance to stratify cardiovascular risk: more precision in therapeutic decision making,” Am. J. Hypertens., vol. 14, no. S5, pp. 258S-263S, Aug. 2001, https://doi.org/10.1016/S0895-7061(01)02154-9. Cohn J. N. “Arterial compliance to stratify cardiovascular risk: more precision in therapeutic decision making,” Am. J. Hypertens vol. 14 no. S5 pp 258S 263 S, Aug 2001 https://doi.org/10.1016/S0895-7061(01)02154-9.10.1016/S0895-7061(01)02154-911497206Search in Google Scholar

C. Giannattasio, M. Failla, A. A. Mangoni, L. Scandola, N. Fraschini, and G. Mancia, “Evaluation of arterial compliance in humans.,” Clin. Exp. Hypertens., vol. 18, no. 3–4, pp. 347–362, 1996, https://doi.org/10.3109/10641969609088968. Giannattasio C. Failla M. Mangoni A. A. Scandola L. Fraschini N. and Mancia G. “Evaluation of arterial compliance in humans.,” Clin. Exp. Hypertens vol. 18 no. 3–4 pp 347362 1996 https://doi.org/10.3109/10641969609088968.10.3109/106419696090889688743026Search in Google Scholar

M. E. Safar et al., “Interaction Between Hypertension and Arterial Stiffness,” Hypertension, vol. 72, no. 4, pp. 796–805, 2018, https://doi.org/10.1161/HYPERTENSIONAHA.118.11212. Safar M. E. et al “Interaction Between Hypertension and Arterial Stiffness,” Hypertension vol. 72 no. 4 pp 796 805 2018 https://doi.org/10.1161/HYPERTENSIONAHA.118.11212.10.1161/HYPERTENSIONAHA.118.1121230354723Search in Google Scholar

“Blood Vessel Compliance - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/medicine-and-dentistry/blood-vessel-compliance (accessed Jul. 28, 2022). “Blood Vessel Compliance - an overview | ScienceDirect Topics.” https://www.sciencedirect.com/topics/medicine-and-dentistry/blood-vessel-compliance (accessed Jul. 28, 2022)Search in Google Scholar

T. C. do Amaral Paes, K. C. C. de Oliveira, P. de Carvalho Padilha, and W. A. F. Peres, “Phase angle assessment in critically ill cancer patients: Relationship with the nutritional status, prognostic factors and death,” J. Crit. Care, vol. 44, pp. 430–435, Apr. 2018, https://doi.org/10.1016/J.JCRC.2018.01.006. do Amaral Paes T. C. de Oliveira K. C. C. de Carvalho Padilha P. and Peres W. A. F. “Phase angle assessment in critically ill cancer patients: Relationship with the nutritional status, prognostic factors and death,” J. Crit. Care vol. 44 pp 430 435 Apr 2018 https://doi.org/10.1016/J.JCRC.2018.01.006.10.1016/j.jcrc.2018.01.00629353120Search in Google Scholar

E. L. de Borba et al., “Phase angle of bioimpedance at 50 kHz is associated with cardiovascular diseases: systematic review and meta-analysis,” Eur. J. Clin. Nutr., 2022, https://doi.org/10.1038/S41430-022-01131-4. de Borba E. L. et al “Phase angle of bioimpedance at 50 kHz is associated with cardiovascular diseases: systematic review and meta-analysis,” Eur. J. Clin. Nutr 2022 https://doi.org/10.1038/S41430-022-01131-4.10.1038/s41430-022-01131-435414661Search in Google Scholar

R. Mattiello, M. A. Amaral, E. Mundstock, and P. K. Ziegelmann, “Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects,” Clin. Nutr., vol. 39, no. 5, pp. 1411–1417, May 2020, https://doi.org/10.1016/J.CLNU.2019.07.004. Mattiello R. Amaral M. A. Mundstock E. and Ziegelmann P. K. “Reference values for the phase angle of the electrical bioimpedance: Systematic review and meta-analysis involving more than 250,000 subjects,” Clin. Nutr vol. 39 no. 5 pp 1411 1417 May 2020 https://doi.org/10.1016/J.CLNU.2019.07.004.10.1016/j.clnu.2019.07.00431400996Search in Google Scholar

E. Mundstock et al., “Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis,” Clin. Nutr., vol. 38, no. 4, pp. 1504–1510, Aug. 2019, https://doi.org/10.1016/J.CLNU.2018.08.031. Mundstock E. et al “Association between phase angle from bioelectrical impedance analysis and level of physical activity: Systematic review and meta-analysis,” Clin. Nutr vol. 38 no. 4 pp 1504 1510 Aug 2019 https://doi.org/10.1016/J.CLNU.2018.08.031.10.1016/j.clnu.2018.08.03130224304Search in Google Scholar

O. Di Vincenzo, M. Marra, and L. Scalfi, “Bioelectrical impedance phase angle in sport: A systematic review,” J. Int. Soc. Sports Nutr., vol. 16, no. 1, p. 1, Nov. 2019, https://doi.org/10.1186/S12970-019-0319-2/TABLES/2. Di Vincenzo O. Marra M. and Scalfi L. “Bioelectrical impedance phase angle in sport: A systematic review,” J. Int. Soc. Sports Nutr vol. 16 no. 1 p. 1, Nov 2019 https://doi.org/10.1186/S12970-019-0319-2/TABLES/2.10.1186/s12970-019-0319-2683325431694665Search in Google Scholar

R. A. Nishimura et al., “2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines,” J. Am. Coll. Cardiol., vol. 70, no. 2, pp. 252–289, 2017, https://doi.org/10.1016/j.jacc.2017.03.011. Nishimura R. A. et al “2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines,” J. Am. Coll. Cardiol vol. 70 no. 2 pp 252 289 2017 https://doi.org/10.1016/j.jacc.2017.03.011.10.1161/CIR.000000000000050328298458Search in Google Scholar

J. N. Karnegis, J. Heinz, and W. G. Kubicek, “Mitral regurgitation and characteristic changes in impedance cardiogram,” Br. Heart J., vol. 45, no. 5, pp. 542–548, May 1981, https://doi.org/10.1136/hrt.45.5.542. Karnegis J. N. Heinz J. and Kubicek W. G. “Mitral regurgitation and characteristic changes in impedance cardiogram,” Br. Heart J vol. 45 no. 5 pp 542 548 May 1981 https://doi.org/10.1136/hrt.45.5.542.10.1136/hrt.45.5.5424825627236460Search in Google Scholar

I. Viscor, P. Jurak, V. Vondra, J. Halamek, and P. Leinveber, "Stroke volume during Mueller maneuver measured by impedance cardiography in patients with mitral regurgitation," Computers in Cardiology Conference (CinC), vol. 36, pp. 749-751. 2009. Viscor I. Jurak P. Vondra V. Halamek J. and Leinveber P. "Stroke volume during Mueller maneuver measured by impedance cardiography in patients with mitral regurgitation," Computers in Cardiology Conference (CinC), vol. 36 pp 749 751 2009Search in Google Scholar

S. Chabchoub, S. Mansouri, and R. Bensalah, “Diagnosis of mitral insufficiency using Impedance Cardiography Technique ICG,” J. Electr. Bioimpedance, vol. 7, p. 28, Oct. 2016, https://doi.org/10.5617/jeb.2872. Chabchoub S. Mansouri S. and Bensalah R. “Diagnosis of mitral insufficiency using Impedance Cardiography Technique ICG,” J. Electr. Bioimpedance vol. 7 p 28 Oct 2016 https://doi.org/10.5617/jeb.2872.10.5617/jeb.2872Search in Google Scholar

R. Ben Salah, T. Alhadidi, S. Mansouri, and M. Naouar, “A New Method for Cardiac Diseases Diagnosis,” Adv. Biosci. Biotechnol., vol. 06, no. 04, pp. 311–319, 2015, https://doi.org/10.4236/ABB.2015.64030. Ben Salah R. Alhadidi T. Mansouri S. and Naouar M. “A New Method for Cardiac Diseases Diagnosis,” Adv. Biosci. Biotechnol vol. 06 no. 04 pp 311 319 2015 https://doi.org/10.4236/ABB.2015.64030.10.4236/abb.2015.64030Search in Google Scholar

S. Chabchoub, S. Mansouri, and R. Ben Salah, “Detection of valvular heart diseases using impedance cardiography ICG,” Biocybern. Biomed. Eng., vol. 38, no. 2, pp. 251–261, 2018, https://doi.org/10.1016/j.bbe.2017.12.002. Chabchoub S. Mansouri S. and Ben Salah R. “Detection of valvular heart diseases using impedance cardiography ICG,” Biocybern. Biomed. Eng vol. 38 no. 2 pp 251 261 2018 https://doi.org/10.1016/j.bbe.2017.12.002.10.1016/j.bbe.2017.12.002Search in Google Scholar

A. Hough, B. Aq-cardiology, W. Palm, B. E. Cave, and A. R. Hough, “Impedance Cardiography to Guide Antihypertensive Treatment in a Patient with Difficult-to-Treat Hypertension,” no. Ci, 2017. Hough A. Aq-cardiology B. Palm W. Cave B. E. and Hough A. R. “Impedance Cardiography to Guide Antihypertensive Treatment in a Patient with Difficult-to-Treat Hypertension,” no. Ci 2017Search in Google Scholar

J. Barochiner et al., “Hemodynamic characterization of hypertensive patients with an exaggerated orthostatic blood pressure variation,” Clin. Exp. Hypertens., vol. 40, no. 3, pp. 287–291, Apr. 2018, https://doi.org/10.1080/10641963.2017.1368539. Barochiner J. et al “Hemodynamic characterization of hypertensive patients with an exaggerated orthostatic blood pressure variation,” Clin. Exp. Hypertens vol. 40 no. 3 pp 287 291 Apr 2018 https://doi.org/10.1080/10641963.2017.1368539.10.1080/10641963.2017.136853928895755Search in Google Scholar

A. P. DeMarzo, “Multiple Cardiovascular Risk Factors Indicate Cardiovascular Disease in Stage 1 Hypertension,” High Blood Press. Cardiovasc. Prev., vol. 26, no. 2, pp. 135–137, Apr. 2019, https://doi.org/10.1007/S40292-019-00304-W. DeMarzo A. P. “Multiple Cardiovascular Risk Factors Indicate Cardiovascular Disease in Stage 1 Hypertension,” High Blood Press. Cardiovasc. Prev vol. 26 no. 2 pp 135137 Apr 2019 https://doi.org/10.1007/S40292-019-00304-W.10.1007/s40292-019-00304-w30719630Search in Google Scholar

A. P. DeMarzo, “Clinical Use of Impedance Cardiography for Hemodynamic Assessment of Early Cardiovascular Disease and Management of Hypertension,” High Blood Press. Cardiovasc. Prev., vol. 27, no. 3, pp. 203–213, Jun. 2020, https://doi.org/10.1007/S40292-020-00383-0. DeMarzo A. P. “Clinical Use of Impedance Cardiography for Hemodynamic Assessment of Early Cardiovascular Disease and Management of Hypertension,” High Blood Press. Cardiovasc. Prev vol. 27 no. 3 pp 203 213 Jun 2020 https://doi.org/10.1007/S40292-020-00383-0.10.1007/s40292-020-00383-032347524Search in Google Scholar

B. Silva Lopes, N. Craveiro, J. Firmino-Machado, P. Ribeiro, and M. Castelo-Branco, “Hemodynamic differences among hypertensive patients with and without heart failure using impedance cardiography,” Ther. Adv. Cardiovasc. Dis., vol. 13, 2019, https://doi.org/10.1177/1753944719876517. Silva Lopes B. Craveiro N. Firmino-Machado J. Ribeiro P. and Castelo-Branco M. “Hemodynamic differences among hypertensive patients with and without heart failure using impedance cardiography,” Ther. Adv. Cardiovasc. Dis vol. 13 2019 https://doi.org/10.1177/1753944719876517.10.1177/1753944719876517676403231554488Search in Google Scholar

“Abstract 17930: Association Between Changes in the Intrathoracic Impedance as Measured by the Optivol Fluid Index in Patients With Heart Failure and Episodes of Ventricular Arrhythmias | Circulation.” https://www.ahajournals.org/doi/10.1161/circ.136.suppl_1.17930 (accessed Aug. 19, 2022). “Abstract 17930: Association Between Changes in the Intrathoracic Impedance as Measured by the Optivol Fluid Index in Patients With Heart Failure and Episodes of Ventricular Arrhythmias | Circulation.” https://www.ahajournals.org/doi/10.1161/circ.136.suppl_1.17930 (accessed Aug. 19, 2022)Search in Google Scholar

O. K. Abou Hassan and M. M. Refaat, “Changes in intrathoracic impedance and episodes of ventricular arrhythmias in patients with heart failure and reduced ejection fraction,” Pacing Clin. Electrophysiol., vol. 41, no. 12, pp. 1583–1584, Dec. 2018, doi: 10.1111/PACE.13536. Abou Hassan O. K. and Refaat M. M. “Changes in intrathoracic impedance and episodes of ventricular arrhythmias in patients with heart failure and reduced ejection fraction,” Pacing Clin. Electrophysiol vol. 41 no. 12 pp 1583 1584 Dec 2018 10.1111/PACE.13536.Open DOISearch in Google Scholar

A. Ząbek et al., “Thoracic impedance measurement in heart stimulation and cardiac arrhythmias,” Pacing Clin. Electrophysiol., vol. 44, no. 1, pp. 148–150, Jan. 2021, https://doi.org/10.1111/PACE.14121. Ząbek A. et al “Thoracic impedance measurement in heart stimulation and cardiac arrhythmias,” Pacing Clin. Electrophysiol vol. 44 no. 1 pp 148 150 Jan 2021 https://doi.org/10.1111/PACE.14121.10.1111/pace.1412133165971Search in Google Scholar

K. Ogawa et al., “The Usefulness and Limitations of Impedance Cardiography for Cardiac Resynchronization Therapy Device Optimization,” Int. Heart J., vol. 61, no. 5, pp. 896–904, 2020, https://doi.org/10.1536/IHJ.19-620. Ogawa K. et al “The Usefulness and Limitations of Impedance Cardiography for Cardiac Resynchronization Therapy Device Optimization,” Int. Heart J vol. 61 no. 5 pp 896 904 2020 https://doi.org/10.1536/IHJ.19-620.10.1536/ihj.19-62032999195Search in Google Scholar

Y. H. Shash, M. A. A. Eldosoky, and M. T. Elwakad, “Bioimpedance analysis in detecting vascular diseases using blood pooling method,” J. Med. Eng. Technol., vol. 42, no. 8, pp. 578–587, Nov. 2018, https://doi.org/10.1080/03091902.2019.1576794. Shash Y. H. Eldosoky M. A. A. and Elwakad M. T. “Bioimpedance analysis in detecting vascular diseases using blood pooling method,” J. Med. Eng. Technol vol. 42 no. 8 pp 578 587 Nov 2018 https://doi.org/10.1080/03091902.2019.1576794.10.1080/03091902.2019.157679430945583Search in Google Scholar

A. Hammoud et al., “Multi-Channel Bioimpedance System for Detecting Vascular Tone in Human Limbs: An Approach,” Sensors (Basel)., vol. 22, no. 1, Jan. 2021, https://doi.org/10.3390/S22010138. Hammoud A. et al “Multi-Channel Bioimpedance System for Detecting Vascular Tone in Human Limbs: An Approach,” Sensors (Basel) vol. 22 no. 1 Jan 2021 https://doi.org/10.3390/S22010138.10.3390/s22010138874746535009681Search in Google Scholar

P. Anyfanti, A. Triantafyllou, E. Gkaliagkousi, N. Koletsos, S. Aslanidis, and S. Douma, “Association of non-invasive hemodynamics with arterial stiffness in rheumatoid arthritis,” Scand. Cardiovasc. J., vol. 52, no. 4, pp. 171–176, Jul. 2018, https://doi.org/10.1080/14017431.2018.1453943. Anyfanti P. Triantafyllou A. Gkaliagkousi E. Koletsos N. Aslanidis S. and Douma S. “Association of non-invasive hemodynamics with arterial stiffness in rheumatoid arthritis,” Scand. Cardiovasc. J vol. 52 no. 4 pp 171 176 Jul 2018 https://doi.org/10.1080/14017431.2018.1453943.10.1080/14017431.2018.145394329560750Search in Google Scholar

K. Ben Abdessalem and R. Ben Salah, “Diagnosis of arterial thrombosis and stenosis in blood vessel Using bioimpedance analysis Diagnosis of arterial thrombosis and stenosis in blood vessel Using bioimpedance analysis,” ,” International Research Journal of Engineering and Technology (IRJET), vol. 2, no. 7, pp. 316-321, 2015. Ben Abdessalem K. and Ben Salah R. “Diagnosis of arterial thrombosis and stenosis in blood vessel Using bioimpedance analysis Diagnosis of arterial thrombosis and stenosis in blood vessel Using bioimpedance analysis,” ,” International Research Journal of Engineering and Technology (IRJET), vol. 2 no. 7 pp 316 321 2015Search in Google Scholar

D. Lindholm, E. Fukaya, N. J. Leeper, and E. Ingelsson, “Bioimpedance and new-onset heart failure: A longitudinal study of >500 000 individuals from the general population,” J. Am. Heart Assoc., vol. 7, no. 13, 2018, https://doi.org/10.1161/JAHA.118.008970. Lindholm D. Fukaya E. Leeper N. J. and Ingelsson E. “Bioimpedance and new-onset heart failure: A longitudinal study of >500 000 individuals from the general population,” J. Am. Heart Assoc vol. 7 no. 13 2018 https://doi.org/10.1161/JAHA.118.008970.10.1161/JAHA.118.008970606489929959136Search in Google Scholar

S. J. Hankinson, C. H. Williams, V. K. Ton, S. S. Gottlieb, and C. C. Hong, “Should we overcome the resistance to bioelectrical impedance in heart failure?,” Expert Rev. Med. Devices, vol. 17, no. 8, pp. 785–794, 2020, https://doi.org/10.1080/17434440.2020.1791701. Hankinson S. J. Williams C. H. Ton V. K. Gottlieb S. S. and Hong C. C. “Should we overcome the resistance to bioelectrical impedance in heart failure?,” Expert Rev. Med. Devices vol. 17 no. 8 pp 785 794 2020 https://doi.org/10.1080/17434440.2020.1791701.10.1080/17434440.2020.1791701835613732658589Search in Google Scholar

K. Bel Haj Ali et al., “Value of Dynamic Variation of Impedance Cardiac output in the diagnosis of Heart Failure in emergency department patients with undifferentiated dyspnea,” Am. J. Emerg. Med., vol. 49, pp. 29–34, Nov. 2021, https://doi.org/10.1016/J.AJEM.2021.05.042. Bel K. Haj Ali et al “Value of Dynamic Variation of Impedance Cardiac output in the diagnosis of Heart Failure in emergency department patients with undifferentiated dyspnea,” Am. J. Emerg. Med vol. 49 pp 29 34 Nov 2021 https://doi.org/10.1016/J.AJEM.2021.05.042.10.1016/j.ajem.2021.05.04234051399Search in Google Scholar

A. Jurek et al., “Acromegaly: The Research and Practical Value of Noninvasive Hemodynamic Assessments via Impedance Cardiography,” Front. Endocrinol. (Lausanne)., vol. 12, Jan. 2022, https://doi.org/10.3389/FENDO.2021.793280. Jurek A. et al “Acromegaly: The Research and Practical Value of Noninvasive Hemodynamic Assessments via Impedance Cardiography,” Front. Endocrinol. (Lausanne) vol. 12 Jan 2022 https://doi.org/10.3389/FENDO.2021.793280.10.3389/fendo.2021.793280880517135116005Search in Google Scholar

A. Galas et al., “Complex assessment of patients with decompensated heart failure: The clinical value of impedance cardiography and N-terminal pro-brain natriuretic peptide,” Heart Lung, vol. 48, no. 4, pp. 294–301, Jul. 2019, https://doi.org/10.1016/J.HRTLNG.2018.10.004. Galas A. et al “Complex assessment of patients with decompensated heart failure: The clinical value of impedance cardiography and N-terminal pro-brain natriuretic peptide,” Heart Lung vol. 48 no. 4 pp 294 301 Jul 2019 https://doi.org/10.1016/J.HRTLNG.2018.10.004.10.1016/j.hrtlng.2018.10.00430391076Search in Google Scholar

D. González-Islas et al., “Body composition changes assessment by bioelectrical impedance vectorial analysis in right heart failure and left heart failure,” Heart Lung, vol. 49, no. 1, pp. 42–47, Jan. 2020, https://doi.org/10.1016/J.HRTLNG.2019.07.003. González-Islas D. et al “Body composition changes assessment by bioelectrical impedance vectorial analysis in right heart failure and left heart failure,” Heart Lung vol. 49 no. 1 pp 42 47 Jan 2020 https://doi.org/10.1016/J.HRTLNG.2019.07.003.10.1016/j.hrtlng.2019.07.00331421949Search in Google Scholar

M. Sato, K. Inai, M. Shimizu, H. Sugiyama, and T. Nakanishi, “Bioelectrical impedance analysis in the management of heart failure in adult patients with congenital heart disease.,” Congenit. Heart Dis., vol. 14, no. 2, pp. 167–175, Oct. 2018, https://doi.org/10.1111/CHD.12683. Sato M. Inai K. Shimizu M. Sugiyama H. and Nakanishi T. “Bioelectrical impedance analysis in the management of heart failure in adult patients with congenital heart disease.,” Congenit. Heart Dis vol. 14 no. 2 pp 167 175 Oct 2018 https://doi.org/10.1111/CHD.12683.10.1111/chd.1268330351489Search in Google Scholar

P. Krzesinski et al., “Noninvasive Bioimpedance Methods From the Viewpoint of Remote Monitoring in Heart Failure,” JMIR mHealth uHealth, vol. 9, no. 5, May 2021, https://doi.org/10.2196/25937. Krzesinski P. et al “Noninvasive Bioimpedance Methods From the Viewpoint of Remote Monitoring in Heart Failure,” JMIR mHealth uHealth vol. 9 no. 5 May 2021 https://doi.org/10.2196/25937.10.2196/25937813501833949964Search in Google Scholar

F. Bernal-Ceballos, N. H. Wacher-Rodarte, A. Orea-Tejeda, T. Hernández-Gilsoul, and L. Castillo-Martínez, “Bioimpedance vector analysis in stable chronic heart failure patients: Level of agreement between single and multiple frequency devices,” Clin. Nutr. ESPEN, vol. 43, pp. 206–211, Jun. 2021, https://doi.org/10.1016/J.CLNESP.2021.04.015. Bernal-Ceballos F. Wacher-Rodarte N. H. Orea-Tejeda A. Hernández-Gilsoul T. and Castillo-Martínez L. “Bioimpedance vector analysis in stable chronic heart failure patients: Level of agreement between single and multiple frequency devices,” Clin. Nutr. ESPEN vol. 43 pp 206 211 Jun 2021 https://doi.org/10.1016/J.CLNESP.2021.04.015.10.1016/j.clnesp.2021.04.01534024516Search in Google Scholar

A. Jurek et al., “Cushing’s Disease: Assessment of Early Cardiovascular Hemodynamic Dysfunction With Impedance Cardiography,” Front. Endocrinol. (Lausanne)., vol. 12, Oct. 2021, https://doi.org/10.3389/FENDO.2021.751743. Jurek A. et al “Cushing’s Disease: Assessment of Early Cardiovascular Hemodynamic Dysfunction With Impedance Cardiography,” Front. Endocrinol. (Lausanne) vol. 12 Oct 2021 https://doi.org/10.3389/FENDO.2021.751743.10.3389/fendo.2021.751743851739534659130Search in Google Scholar

D. Shah, S. Patel, and S. K. Bharti, “Heart Disease Prediction using Machine Learning Techniques,” SN Comput. Sci. 2020 16, vol. 1, no. 6, pp. 1–6, Oct. 2020, https://doi.org/10.1007/S42979-020-00365-Y. Shah D. Patel S. and Bharti S. K. “Heart Disease Prediction using Machine Learning Techniques,” SN Comput. Sci. 2020 16 vol. 1 no. 6 pp 1 6 Oct 2020 https://doi.org/10.1007/S42979-020-00365-Y.10.1007/s42979-020-00365-ySearch in Google Scholar

M. Kirmani, “Cardiovascular Disease Prediction using Data Mining Techniques,” Orient. J. Comput. Sci. Technol., vol. 10, no. 2, pp. 520–528, 2017, https://doi.org/10.13005/ojcst/10.02.38. Kirmani M. “Cardiovascular Disease Prediction using Data Mining Techniques,” Orient. J. Comput. Sci. Technol vol. 10 no. 2 pp 520 528 2017 https://doi.org/10.13005/ojcst/10.02.38.10.13005/ojcst/10.02.38Search in Google Scholar

A. Rath, D. Mishra, G. Panda, and S. C. Satapathy, An exhaustive review of machine and deep learning based diagnosis of heart diseases, no. 0123456789. Springer US, 2021. Rath A. Mishra D. Panda G. and Satapathy S. C. An exhaustive review of machine and deep learning based diagnosis of heart diseases, no. 0123456789 Springer US 202110.1007/s11042-021-11259-3Search in Google Scholar

“MIT-BIH Database Distribution Home Page.” http://ecg.mit.edu/index.html (accessed Aug. 19, 2022). “MIT-BIH Database Distribution Home Page.” http://ecg.mit.edu/index.html (accessed Aug. 19, 2022)Search in Google Scholar

“Continuous Cuffless Monitoring of Arterial Blood Pressure via Graphene Bioimpedance Tattoos v1.0.0.” https://www.physionet.org/content/bp-graphene-bioimpedance/1.0.0/ (accessed Aug. 19, 2022). “Continuous Cuffless Monitoring of Arterial Blood Pressure via Graphene Bioimpedance Tattoos v1.0.0.” https://www.physionet.org/content/bp-graphene-bioimpedance/1.0.0/ (accessed Aug. 19, 2022)Search in Google Scholar

“Quantitative Dehydration Estimation v1.0.0.” https://physionet.org/content/qde/1.0.0/ (accessed Aug. 19, 2022). “Quantitative Dehydration Estimation v1.0.0.” https://physionet.org/content/qde/1.0.0/ (accessed Aug. 19, 2022)Search in Google Scholar