Open Access

Habitat Suitability for Endemic and Vulnerable White-Naped Tit (Machlolophus nuchalis) in Arid and Semi-Arid Landscapes of India

, , , ,  and   
May 04, 2025

Cite
Download Cover

Ahlawat, R., Sharma, C., & Dalal, S. (2018). White-naped Tit Machlolophus nuchalis in Haryana. Indian Birds, 14(4), 125. Search in Google Scholar

Asadalla, N., Abdullah, M. M., Al‐Ali, Z. M., & Abdullah, M. T. (2021). Vegetation restoration targeting approach to identify the optimum environmental conditions for the restoration of native desert plants using remote sensing and MaxEnt modeling. Restoration Ecology, 29(6), e13425. Search in Google Scholar

Bani, L., Baietto, M., Bottoni, L., & Massa, R. (2002). The use of focal species in designing a habitat network for a lowland area in Lombardy, Italy. Conservation Biology, 16, 826-831. https://doi.org/10.1046/j.1523-1739.2002.01082.x Search in Google Scholar

Barry, S., & Huntsinger, L. (2021). Rangeland land-sharing, livestock grazing's role in the conservation of imperiled species. Sustainability, 13(8), 4466. https://doi.org/10.3390/su13084466 Search in Google Scholar

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011 Search in Google Scholar

Björklund, H., Parkkinen, A., Hakkari, T., Heikkinen, R. K., Virkkala, R., & Lensu, A. (2020). Predicting valuable forest habitats using an indicator species for biodiversity. Biological Conservation, 249, 108682. https://doi.org/10.1016/j.biocon.2020.108682 Search in Google Scholar

Bora, C. & Saikia, P. K. (2024). MaxEnt modelling for predicting habitat suitability and future range of Black-breasted Parrotbill (Paradoxornis flavirostris Gould, 1836) in Northeast India. Ornis Hungarica 32(2): 31–44. DOI: 10.2478/orhu-2024-0003 Search in Google Scholar

Brambilla, M., Resano-Mayor, J., Scridel, D., Anderle, M., Bogliani, G., Braunisch, V., & Rubolini, D. (2018). Past and future impact of climate change on foraging habitat suitability in a high-alpine bird species: Management options to buffer against global warming effects. Biological Conservation, 221, 209-218. https://doi.org/10.1016/j.biocon.2018.03.008 Search in Google Scholar

Chaudhari, S. K., Santra, P., Machiwal, D., Kumar, M., Singh, V. K., Reddy, K. S., & Kundu, S. (2024). Soil, Water, and Nutrient Management in Drylands. In S. Kundu (Ed.), Managing Soil Drought. CRC Press. Search in Google Scholar

Chaudhry, P., Bohra, N. K., & Choudhary, K. R. (2011). Conserving biodiversity of community forests and rangelands of a hot arid region of India. Land Use Policy, 28(3), 506-513. Search in Google Scholar

Civantos, E., Monteiro, A. T., Gonçalves, J., Marcos, B., Alves, P., & Honrado, J. P. (2018). Patterns of landscape seasonality influence passerine diversity: Implications for conservation management under global change. Ecological Complexity, 36, 117-125. Search in Google Scholar

Dagar, J. C., & Gupta, S. R. (2020). Silvopasture options for enhanced biological productivity of degraded pasture/grazing lands: an overview. Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges, 2, 163-227. https://doi.org/10.1007/978-981-15-6807-7_6 Search in Google Scholar

Dai, C., Zhao, N. A., Wang, W., Lin, C., Gao, B., Yang, X., & Lei, F. (2011). Profound climatic effects on two East Asian black-throated tits (Ave: Aegithalidae), revealed by ecological niche models and phylogeographic analysis. PLoS One, 6(12), e29329. https://doi.org/10.1371/journal.pone.0029329 Search in Google Scholar

Dookia, S. (2007). First record of Pied Tit Parus nuchalis in Thar Desert of Rajasthan. Indian Birds, 3(3), 112-113. Search in Google Scholar

eBird Basic Dataset. (2024). Version: EBD_relMar-2024. Cornell Lab of Ornithology, Ithaca, New York. Search in Google Scholar

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 Search in Google Scholar

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. Search in Google Scholar

Garrote, G., Fernández-López, J., Rojas, E., López, G. & Simón, M. (2020). Planning the peninsula-wide recovery of the Iberian lynx: identification of favourable habitat areas. Mammalia, 84(5), 413-420. https://doi.org/10.1515/mammalia-2019-0052 Search in Google Scholar

Glądalski, M., Bańbura, M., Kaliński, A., Markowski, M., Skwarska, J., Wawrzyniak, J., & Bańbura, J. (2016). Effects of extreme thermal conditions on plasticity in breeding phenology and double-broodedness of Great Tits and Blue Tits in central Poland in 2013 and 2014. International Journal of Biometeorology, 60, 1795-1800. https://doi.org/10.1007/s00484-016-1152-9 Search in Google Scholar

Gontier, M., Mörtberg, U., & Balfors, B. (2010). Comparing GIS-based habitat models for applications in EIA and SEA. Environmental Impact Assessment Review, 30(1), 8-18. Search in Google Scholar

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3), 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9 Search in Google Scholar

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., & Martin, T. G. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424-1435. https://doi.org/10.1111/ele.12189 Search in Google Scholar

Hirzel, A. H., & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45(5), 1372-1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x Search in Google Scholar

Inskipp, C., & Baral, H. S. (2010). Potential impacts of agriculture on Nepal birds. Our Nature, 8(1), 270-312. Search in Google Scholar

IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. In: Brondizio, E. S., Settele, J., Díaz, S., & Ngo, H. T. (Eds.). IPBES Secretariat (pp. 1148), Bonn, Germany, https://doi.org/10.5281/zenodo.3831673 Search in Google Scholar

Işik, K. (2011). Rare and endemic species: Why are they prone to extinction? Turkish Journal of Botany, 35, 411-417. https://doi.org/10.3906/bot-1012-90 Search in Google Scholar

Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Physical environment of India. Hydrology and Water Resources of India, 3, 62. https://doi.org/10.1007/1-4020-5180-8_1 Search in Google Scholar

Jiguet, F., Julliard, R., Thomas, C. D., Dehorter, O., Newson, S. E., & Couvet, D. (2006). Thermal range predicts bird population resilience to extreme high temperatures. Ecology Letters, 9(12), 1321-1330. https://doi.org/10.1111/j.1461-0248.2006.00986.x Search in Google Scholar

Jones, S. (2007). Sightings of White-naped Tit Parus nuchalis in Arogyavaram, Chittoor district, Andhra Pradesh. Indian Birds, 3(5), 198-199. Search in Google Scholar

Joshua, J., Gokula, V., & Sunderraj, S. F. W. (2007). Status of Pied Tit Parus nuchalis in Narayan Sarovar Sanctuary, Gujarat, India. Indian Birds, 3, 91-93. Search in Google Scholar

Joyce, L. A., & Marshall, N. A. (2017). Managing climate change risks in rangeland systems. Rangeland systems: Processes, management and challenges, 491-526. https://doi.org/10.1007/978-3-319-46709-2_15 Search in Google Scholar

Kala, H., & Joshua, J. (2011). Observation on the nesting behavior of vulnerable White-naped Tit Parus nuchalis using artificial nest boxes in southern Aravalli Hills of Rajasthan: a pilot conservation and species recovery action. In S. Bhupathy, B. A. K. Prusty, H. N. Kumara, R. S. C. Jayaraj, G. Quadros, & P. Pramod (Eds.), Status of Indian Birds and Their Conservation: First International Conference on Indian Ornithology (ICIO) - 2011 (pp. 199-200). Salim Ali Centre for Ornithology and Natural History, Coimbatore, India. Search in Google Scholar

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use / land cover with Sentinel 2 and deep learning. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 2021, pp. 4704-4707. https://doi.org/10.1109/IGARSS47720.2021.9553499 Search in Google Scholar

Leech, D. I., & Crick, H. Q. P. (2007). Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis, 149, 128-145. https://doi.org/10.1111/j.1474-919X.2007.00729.x Search in Google Scholar

Li, Z., Liu, Y., & Zeng, H. (2022). Application of the MaxEnt model in improving the accuracy of ecological red line identification: A case study of Zhanjiang, China. Ecological Indicators, 137, 108767. Search in Google Scholar

Lobo-Araújo, L. W., Costa, M. C., Silveira, L. F., & Francisco, M. R. (2024). Massive bird nest losses: A neglected threat for passerine birds in Atlantic Forest fragments from the Pernambuco endemism center. Diversity, 16(4), 207. Search in Google Scholar

Mathur, M., & Pandey, C. B. (2016). Vegetation ecology of hot arid and semi-arid grazing lands of India. Remote Sensing for Natural Resources Monitoring and Management. Scientific Publishers, Jodhpur. Search in Google Scholar

Mazloum, B., Pourmanafi, S., Soffianian, A., Salmanmahiny, A., & Prishchepov, A. V. (2021). The fate of rangelands: Revealing past and predicting future land-cover transitions from 1985 to 2036 in the drylands of Central Iran. Land Degradation & Development, 32(14), 4004-4017. Search in Google Scholar

McCluney, K. E., Belnap, J., Collins, S. L., González, A. L., Hagen, E. M., Nathaniel Holland, J., & Wolf, B. O. (2012). Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biological Reviews, 87(3), 563-582. https://doi.org/10.1111/j.1469-185X.2011.00209.x Search in Google Scholar

McNeely, J. A. (2003). Biodiversity in arid regions: values and perceptions. Journal of Arid Environments, 54(1), 61-70. Search in Google Scholar

Meyer, W. B., & Turner, B. L. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23, 39-61. http://www.jstor.org/stable/2097281 Search in Google Scholar

Mosisa, T., & Asefa, G. (2022). The impacts of land use/land cover change on range land biodiversity in Ethiopia. Retrieved July 3, 2022, from https://doi.org/10.37421/2332-2543.2022.10.419 Search in Google Scholar

Mudereri, B.T., Mukanga, C., Mupfiga, E.T., Gawatirisa, C., Kimathi, E. & Chitata, T. (2020). Analysis of potentially suitable habitat within migration connections of an intra-African migrant-the Blue Swallow (Hirundo atrocaerulea). Ecological Informatics. 57. https://doi.org/10.1016/j.ecoinf.2020.101082 Search in Google Scholar

Pascale, S., Lucarini, V., Feng, X., Porporato, A., & Hasson, S. U. (2015). Analysis of rainfall seasonality from observations and climate models. Climate Dynamics, 44, 3281-3301. https://doi.org/10.1007/s00382-014-2278-2 Search in Google Scholar

Pereira, H. M., Navarro, L. M., & Martins, I. S. (2012). Global biodiversity change: the bad, the good, and the unknown. Annual Review of Environment and Resources, 37, 25-50. https://doi.org/10.1146/annurev-environ-042911-093511 Search in Google Scholar

Perrins, C. (1979). British Tits. London, UK: Collins. https://www.jstor.org/stable/4085914 Search in Google Scholar

Phillips, S. J., Dudík, M., & Schapire, R. E. (2024). Maxent software for modeling species niches and distributions (Version 3.4.4). Retrieved June 28, 2024, from https://biodiversityinformatics.amnh.org/open_source/maxent/ Search in Google Scholar

Potter, A. B., & Dhondt, A. A. (2019). Behavioural observations on White-naped Tit Machlolophus nuchalis during its breeding season. Indian Birds, 14(6), 161-165. Search in Google Scholar

QGIS.org. (2024). QGIS Geographic Information System. QGIS Association. http://www.qgis.org Search in Google Scholar

R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org Search in Google Scholar

Roy, C., Michel, N. L., Handel, C. M., Van Wilgenburg, S. L., Burkhalter, J. C., Gurney, K. E., & Zuckerberg, B. (2019). Monitoring boreal avian populations: How can we estimate trends and trajectories from noisy data. Avian Conservation and Ecology, 14(8). https://doi.org/10.5751/ACE-01397-140208 Search in Google Scholar

Schorn, J. (2024). Species-diversity and-dominance among secondary hole nesting birds depending on human presence. University of Vienna. Search in Google Scholar

Sharma, B. K., Kulshreshtha, S., Sharma, S. K., Lodha, R. M., Singh, S., Singh, M., & Sharma, N. (2013). Physiography and biological diversity of Rajasthan. In Faunal Heritage of Rajasthan, India: General Background and Ecology of Vertebrates (pp. 39-166). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-0800-0 Search in Google Scholar

Sharma, S., & Koli, V. (2014). Population and nesting characteristics of the Vulnerable White-naped Tit Parus nuchalis at Sajjangarh Wildlife Sanctuary, Rajasthan, India. Forktail, 30, 1-4. Search in Google Scholar

Stuber, E. F., Robinson, O. J., Bjerre, E. R., Otto, M. C., Millsap, B. A., Zimmerman, G. S., & Ruiz-Gutierrez, V. (2022). The potential of semi-structured citizen science data as a supplement for conservation decision-making: Validating the performance of eBird against targeted avian monitoring efforts. Biological Conservation, 270, 109556. https://doi.org/10.1016/j.biocon.2022.109556 Search in Google Scholar

Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., & Kelling, S. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation, 169, 31-40. https://doi.org/10.1016/j.biocon.2013.11.003 Search in Google Scholar

Sullivan, B. L., Phillips, T., Dayer, A. A., Wood, C. L., Farnsworth, A., Iliff, M. J., & Kelling, S. (2017). Using open access observational data for conservation action: A case study for birds. Biological Conservation, 208, 5-14. https://doi.org/10.1016/j.biocon.2016.04.031 Search in Google Scholar

Templeton, A. R., Shaw, K., Routman, E., & Davis, S. K. (1990). The genetic consequences of habitat fragmentation. Annals of the Missouri Botanical Garden, 13, 13-27. https://doi.org/10.2307/2399621 Search in Google Scholar

Tiwari, J. K. (2001). Status and distribution of the White-naped Tit Parus nuchalis in Gujarat and Rajasthan. Journal of the Bombay Natural History Society, 98(1), 26-30. Search in Google Scholar

Tiwari, J. K., & Rahmani, A. R. (1996). The current status and biology of the White-naped Tit Parus nuchalis in Kutch, Gujarat, India. Forktail, 12, 95-105. Search in Google Scholar

Toutain, B., Ickowicz, A., Dutilly-Diane, C., Reid, R., Diop, A. T., Taneja, V. K., & Ash, A. (2010). Impacts of livestock systems on terrestrial ecosystems. The University of Chicago Press, Chicago, IL, USA. Search in Google Scholar

Trivedi, P. (2009) Observations on the globally threatened Pied Tit Parus nuchalis at Jessore sanctuary, Gujarat. Indian Birds 5: 7–10. Search in Google Scholar

Uusitalo, R., Siljander, M., Culverwell, C. L., Mutai, N. C., Forbes, K. M., Vapalahti, O., & Pellikka, P. K. (2019). Predictive mapping of mosquito distribution based on environmental and anthropogenic factors in Taita Hills, Kenya. International Journal of Applied Earth Observation and Geoinformation, 76, 84-92. https://doi.org/10.1016/j.jag.2018.11.004 Search in Google Scholar

Van Noordwijk, A. J., McCleery, R. H., & Perrins, C. M. (1995). Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. Journal of Animal Ecology, 451-458. https://doi.org/10.2307/5648 Search in Google Scholar

Zhang, G. (2020). Spatial and temporal patterns in volunteer data contribution activities: A case study of eBird. ISPRS International Journal of Geo-Information, 9(10), 597. https://doi.org/10.3390/ijgi9100597 Search in Google Scholar

Zhang, J., Jiang, F., Li, G., Qin, W., Li, S., Gao, H., Cai, Z., Lin, G., & Zhang, T. (2019). Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecology and Evolution, 9(11), 6643-6654. https://doi.org/10.1002/ece3.5243 Search in Google Scholar

Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, Geosciences, other, Life Sciences, Ecology