[
Ahlawat, R., Sharma, C., & Dalal, S. (2018). White-naped Tit Machlolophus nuchalis in Haryana. Indian Birds, 14(4), 125.
]Search in Google Scholar
[
Asadalla, N., Abdullah, M. M., Al‐Ali, Z. M., & Abdullah, M. T. (2021). Vegetation restoration targeting approach to identify the optimum environmental conditions for the restoration of native desert plants using remote sensing and MaxEnt modeling. Restoration Ecology, 29(6), e13425.
]Search in Google Scholar
[
Bani, L., Baietto, M., Bottoni, L., & Massa, R. (2002). The use of focal species in designing a habitat network for a lowland area in Lombardy, Italy. Conservation Biology, 16, 826-831. https://doi.org/10.1046/j.1523-1739.2002.01082.x
]Search in Google Scholar
[
Barry, S., & Huntsinger, L. (2021). Rangeland land-sharing, livestock grazing's role in the conservation of imperiled species. Sustainability, 13(8), 4466. https://doi.org/10.3390/su13084466
]Search in Google Scholar
[
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011
]Search in Google Scholar
[
Björklund, H., Parkkinen, A., Hakkari, T., Heikkinen, R. K., Virkkala, R., & Lensu, A. (2020). Predicting valuable forest habitats using an indicator species for biodiversity. Biological Conservation, 249, 108682. https://doi.org/10.1016/j.biocon.2020.108682
]Search in Google Scholar
[
Bora, C. & Saikia, P. K. (2024). MaxEnt modelling for predicting habitat suitability and future range of Black-breasted Parrotbill (Paradoxornis flavirostris Gould, 1836) in Northeast India. Ornis Hungarica 32(2): 31–44. DOI: 10.2478/orhu-2024-0003
]Search in Google Scholar
[
Brambilla, M., Resano-Mayor, J., Scridel, D., Anderle, M., Bogliani, G., Braunisch, V., & Rubolini, D. (2018). Past and future impact of climate change on foraging habitat suitability in a high-alpine bird species: Management options to buffer against global warming effects. Biological Conservation, 221, 209-218. https://doi.org/10.1016/j.biocon.2018.03.008
]Search in Google Scholar
[
Chaudhari, S. K., Santra, P., Machiwal, D., Kumar, M., Singh, V. K., Reddy, K. S., & Kundu, S. (2024). Soil, Water, and Nutrient Management in Drylands. In S. Kundu (Ed.), Managing Soil Drought. CRC Press.
]Search in Google Scholar
[
Chaudhry, P., Bohra, N. K., & Choudhary, K. R. (2011). Conserving biodiversity of community forests and rangelands of a hot arid region of India. Land Use Policy, 28(3), 506-513.
]Search in Google Scholar
[
Civantos, E., Monteiro, A. T., Gonçalves, J., Marcos, B., Alves, P., & Honrado, J. P. (2018). Patterns of landscape seasonality influence passerine diversity: Implications for conservation management under global change. Ecological Complexity, 36, 117-125.
]Search in Google Scholar
[
Dagar, J. C., & Gupta, S. R. (2020). Silvopasture options for enhanced biological productivity of degraded pasture/grazing lands: an overview. Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges, 2, 163-227. https://doi.org/10.1007/978-981-15-6807-7_6
]Search in Google Scholar
[
Dai, C., Zhao, N. A., Wang, W., Lin, C., Gao, B., Yang, X., & Lei, F. (2011). Profound climatic effects on two East Asian black-throated tits (Ave: Aegithalidae), revealed by ecological niche models and phylogeographic analysis. PLoS One, 6(12), e29329. https://doi.org/10.1371/journal.pone.0029329
]Search in Google Scholar
[
Dookia, S. (2007). First record of Pied Tit Parus nuchalis in Thar Desert of Rajasthan. Indian Birds, 3(3), 112-113.
]Search in Google Scholar
[
eBird Basic Dataset. (2024). Version: EBD_relMar-2024. Cornell Lab of Ornithology, Ithaca, New York.
]Search in Google Scholar
[
Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
]Search in Google Scholar
[
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315.
]Search in Google Scholar
[
Garrote, G., Fernández-López, J., Rojas, E., López, G. & Simón, M. (2020). Planning the peninsula-wide recovery of the Iberian lynx: identification of favourable habitat areas. Mammalia, 84(5), 413-420. https://doi.org/10.1515/mammalia-2019-0052
]Search in Google Scholar
[
Glądalski, M., Bańbura, M., Kaliński, A., Markowski, M., Skwarska, J., Wawrzyniak, J., & Bańbura, J. (2016). Effects of extreme thermal conditions on plasticity in breeding phenology and double-broodedness of Great Tits and Blue Tits in central Poland in 2013 and 2014. International Journal of Biometeorology, 60, 1795-1800. https://doi.org/10.1007/s00484-016-1152-9
]Search in Google Scholar
[
Gontier, M., Mörtberg, U., & Balfors, B. (2010). Comparing GIS-based habitat models for applications in EIA and SEA. Environmental Impact Assessment Review, 30(1), 8-18.
]Search in Google Scholar
[
Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2-3), 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9
]Search in Google Scholar
[
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., & Martin, T. G. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424-1435. https://doi.org/10.1111/ele.12189
]Search in Google Scholar
[
Hirzel, A. H., & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45(5), 1372-1381. https://doi.org/10.1111/j.1365-2664.2008.01524.x
]Search in Google Scholar
[
Inskipp, C., & Baral, H. S. (2010). Potential impacts of agriculture on Nepal birds. Our Nature, 8(1), 270-312.
]Search in Google Scholar
[
IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. In: Brondizio, E. S., Settele, J., Díaz, S., & Ngo, H. T. (Eds.). IPBES Secretariat (pp. 1148), Bonn, Germany, https://doi.org/10.5281/zenodo.3831673
]Search in Google Scholar
[
Işik, K. (2011). Rare and endemic species: Why are they prone to extinction? Turkish Journal of Botany, 35, 411-417. https://doi.org/10.3906/bot-1012-90
]Search in Google Scholar
[
Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). Physical environment of India. Hydrology and Water Resources of India, 3, 62. https://doi.org/10.1007/1-4020-5180-8_1
]Search in Google Scholar
[
Jiguet, F., Julliard, R., Thomas, C. D., Dehorter, O., Newson, S. E., & Couvet, D. (2006). Thermal range predicts bird population resilience to extreme high temperatures. Ecology Letters, 9(12), 1321-1330. https://doi.org/10.1111/j.1461-0248.2006.00986.x
]Search in Google Scholar
[
Jones, S. (2007). Sightings of White-naped Tit Parus nuchalis in Arogyavaram, Chittoor district, Andhra Pradesh. Indian Birds, 3(5), 198-199.
]Search in Google Scholar
[
Joshua, J., Gokula, V., & Sunderraj, S. F. W. (2007). Status of Pied Tit Parus nuchalis in Narayan Sarovar Sanctuary, Gujarat, India. Indian Birds, 3, 91-93.
]Search in Google Scholar
[
Joyce, L. A., & Marshall, N. A. (2017). Managing climate change risks in rangeland systems. Rangeland systems: Processes, management and challenges, 491-526. https://doi.org/10.1007/978-3-319-46709-2_15
]Search in Google Scholar
[
Kala, H., & Joshua, J. (2011). Observation on the nesting behavior of vulnerable White-naped Tit Parus nuchalis using artificial nest boxes in southern Aravalli Hills of Rajasthan: a pilot conservation and species recovery action. In S. Bhupathy, B. A. K. Prusty, H. N. Kumara, R. S. C. Jayaraj, G. Quadros, & P. Pramod (Eds.), Status of Indian Birds and Their Conservation: First International Conference on Indian Ornithology (ICIO) - 2011 (pp. 199-200). Salim Ali Centre for Ornithology and Natural History, Coimbatore, India.
]Search in Google Scholar
[
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use / land cover with Sentinel 2 and deep learning. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 2021, pp. 4704-4707. https://doi.org/10.1109/IGARSS47720.2021.9553499
]Search in Google Scholar
[
Leech, D. I., & Crick, H. Q. P. (2007). Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis, 149, 128-145. https://doi.org/10.1111/j.1474-919X.2007.00729.x
]Search in Google Scholar
[
Li, Z., Liu, Y., & Zeng, H. (2022). Application of the MaxEnt model in improving the accuracy of ecological red line identification: A case study of Zhanjiang, China. Ecological Indicators, 137, 108767.
]Search in Google Scholar
[
Lobo-Araújo, L. W., Costa, M. C., Silveira, L. F., & Francisco, M. R. (2024). Massive bird nest losses: A neglected threat for passerine birds in Atlantic Forest fragments from the Pernambuco endemism center. Diversity, 16(4), 207.
]Search in Google Scholar
[
Mathur, M., & Pandey, C. B. (2016). Vegetation ecology of hot arid and semi-arid grazing lands of India. Remote Sensing for Natural Resources Monitoring and Management. Scientific Publishers, Jodhpur.
]Search in Google Scholar
[
Mazloum, B., Pourmanafi, S., Soffianian, A., Salmanmahiny, A., & Prishchepov, A. V. (2021). The fate of rangelands: Revealing past and predicting future land-cover transitions from 1985 to 2036 in the drylands of Central Iran. Land Degradation & Development, 32(14), 4004-4017.
]Search in Google Scholar
[
McCluney, K. E., Belnap, J., Collins, S. L., González, A. L., Hagen, E. M., Nathaniel Holland, J., & Wolf, B. O. (2012). Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biological Reviews, 87(3), 563-582. https://doi.org/10.1111/j.1469-185X.2011.00209.x
]Search in Google Scholar
[
McNeely, J. A. (2003). Biodiversity in arid regions: values and perceptions. Journal of Arid Environments, 54(1), 61-70.
]Search in Google Scholar
[
Meyer, W. B., & Turner, B. L. (1992). Human population growth and global land-use/cover change. Annual Review of Ecology and Systematics, 23, 39-61. http://www.jstor.org/stable/2097281
]Search in Google Scholar
[
Mosisa, T., & Asefa, G. (2022). The impacts of land use/land cover change on range land biodiversity in Ethiopia. Retrieved July 3, 2022, from https://doi.org/10.37421/2332-2543.2022.10.419
]Search in Google Scholar
[
Mudereri, B.T., Mukanga, C., Mupfiga, E.T., Gawatirisa, C., Kimathi, E. & Chitata, T. (2020). Analysis of potentially suitable habitat within migration connections of an intra-African migrant-the Blue Swallow (Hirundo atrocaerulea). Ecological Informatics. 57. https://doi.org/10.1016/j.ecoinf.2020.101082
]Search in Google Scholar
[
Pascale, S., Lucarini, V., Feng, X., Porporato, A., & Hasson, S. U. (2015). Analysis of rainfall seasonality from observations and climate models. Climate Dynamics, 44, 3281-3301. https://doi.org/10.1007/s00382-014-2278-2
]Search in Google Scholar
[
Pereira, H. M., Navarro, L. M., & Martins, I. S. (2012). Global biodiversity change: the bad, the good, and the unknown. Annual Review of Environment and Resources, 37, 25-50. https://doi.org/10.1146/annurev-environ-042911-093511
]Search in Google Scholar
[
Perrins, C. (1979). British Tits. London, UK: Collins. https://www.jstor.org/stable/4085914
]Search in Google Scholar
[
Phillips, S. J., Dudík, M., & Schapire, R. E. (2024). Maxent software for modeling species niches and distributions (Version 3.4.4). Retrieved June 28, 2024, from https://biodiversityinformatics.amnh.org/open_source/maxent/
]Search in Google Scholar
[
Potter, A. B., & Dhondt, A. A. (2019). Behavioural observations on White-naped Tit Machlolophus nuchalis during its breeding season. Indian Birds, 14(6), 161-165.
]Search in Google Scholar
[
QGIS.org. (2024). QGIS Geographic Information System. QGIS Association. http://www.qgis.org
]Search in Google Scholar
[
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org
]Search in Google Scholar
[
Roy, C., Michel, N. L., Handel, C. M., Van Wilgenburg, S. L., Burkhalter, J. C., Gurney, K. E., & Zuckerberg, B. (2019). Monitoring boreal avian populations: How can we estimate trends and trajectories from noisy data. Avian Conservation and Ecology, 14(8). https://doi.org/10.5751/ACE-01397-140208
]Search in Google Scholar
[
Schorn, J. (2024). Species-diversity and-dominance among secondary hole nesting birds depending on human presence. University of Vienna.
]Search in Google Scholar
[
Sharma, B. K., Kulshreshtha, S., Sharma, S. K., Lodha, R. M., Singh, S., Singh, M., & Sharma, N. (2013). Physiography and biological diversity of Rajasthan. In Faunal Heritage of Rajasthan, India: General Background and Ecology of Vertebrates (pp. 39-166). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-0800-0
]Search in Google Scholar
[
Sharma, S., & Koli, V. (2014). Population and nesting characteristics of the Vulnerable White-naped Tit Parus nuchalis at Sajjangarh Wildlife Sanctuary, Rajasthan, India. Forktail, 30, 1-4.
]Search in Google Scholar
[
Stuber, E. F., Robinson, O. J., Bjerre, E. R., Otto, M. C., Millsap, B. A., Zimmerman, G. S., & Ruiz-Gutierrez, V. (2022). The potential of semi-structured citizen science data as a supplement for conservation decision-making: Validating the performance of eBird against targeted avian monitoring efforts. Biological Conservation, 270, 109556. https://doi.org/10.1016/j.biocon.2022.109556
]Search in Google Scholar
[
Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., & Kelling, S. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation, 169, 31-40. https://doi.org/10.1016/j.biocon.2013.11.003
]Search in Google Scholar
[
Sullivan, B. L., Phillips, T., Dayer, A. A., Wood, C. L., Farnsworth, A., Iliff, M. J., & Kelling, S. (2017). Using open access observational data for conservation action: A case study for birds. Biological Conservation, 208, 5-14. https://doi.org/10.1016/j.biocon.2016.04.031
]Search in Google Scholar
[
Templeton, A. R., Shaw, K., Routman, E., & Davis, S. K. (1990). The genetic consequences of habitat fragmentation. Annals of the Missouri Botanical Garden, 13, 13-27. https://doi.org/10.2307/2399621
]Search in Google Scholar
[
Tiwari, J. K. (2001). Status and distribution of the White-naped Tit Parus nuchalis in Gujarat and Rajasthan. Journal of the Bombay Natural History Society, 98(1), 26-30.
]Search in Google Scholar
[
Tiwari, J. K., & Rahmani, A. R. (1996). The current status and biology of the White-naped Tit Parus nuchalis in Kutch, Gujarat, India. Forktail, 12, 95-105.
]Search in Google Scholar
[
Toutain, B., Ickowicz, A., Dutilly-Diane, C., Reid, R., Diop, A. T., Taneja, V. K., & Ash, A. (2010). Impacts of livestock systems on terrestrial ecosystems. The University of Chicago Press, Chicago, IL, USA.
]Search in Google Scholar
[
Trivedi, P. (2009) Observations on the globally threatened Pied Tit Parus nuchalis at Jessore sanctuary, Gujarat. Indian Birds 5: 7–10.
]Search in Google Scholar
[
Uusitalo, R., Siljander, M., Culverwell, C. L., Mutai, N. C., Forbes, K. M., Vapalahti, O., & Pellikka, P. K. (2019). Predictive mapping of mosquito distribution based on environmental and anthropogenic factors in Taita Hills, Kenya. International Journal of Applied Earth Observation and Geoinformation, 76, 84-92. https://doi.org/10.1016/j.jag.2018.11.004
]Search in Google Scholar
[
Van Noordwijk, A. J., McCleery, R. H., & Perrins, C. M. (1995). Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. Journal of Animal Ecology, 451-458. https://doi.org/10.2307/5648
]Search in Google Scholar
[
Zhang, G. (2020). Spatial and temporal patterns in volunteer data contribution activities: A case study of eBird. ISPRS International Journal of Geo-Information, 9(10), 597. https://doi.org/10.3390/ijgi9100597
]Search in Google Scholar
[
Zhang, J., Jiang, F., Li, G., Qin, W., Li, S., Gao, H., Cai, Z., Lin, G., & Zhang, T. (2019). Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecology and Evolution, 9(11), 6643-6654. https://doi.org/10.1002/ece3.5243
]Search in Google Scholar