Open Access

Positive Remodeling – a Major Feature of Vulnerability in Patients with Non-Obstructive Coronary Artery Disease


Cite

1. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13-18.10.1016/j.jacc.2005.10.065 Search in Google Scholar

2. Overbaugh KJ. Acute Coronary Syndrome. AJN Am J Nurs. 2009;109:42-52.10.1097/01.NAJ.0000351508.39509.e2 Search in Google Scholar

3. Clarke J-RD, Duarte Lau F, Zarich SW. Determining the Significance of Coronary Plaque Lesions: Physiological Stenosis Severity and Plaque Characteristics. J Clin Med. 2020;9:665.10.3390/jcm9030665 Search in Google Scholar

4. Stefanadis C, Antoniou C, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6 e005543.10.1161/JAHA.117.005543 Search in Google Scholar

5. Drobni ZD, Kolossváry M, Szilveszter B, Merkely B, Maurovich-Horvat P. A koronária-CT-angiográfia jelentősége a mindennapi gyakorlatban stabil anginás betegek körében. Cardiol Hung. 2018;48:52-57.10.26430/CHUNGARICA.2018.48.1.52 Search in Google Scholar

6. Crawford T, Levene CI. Medial thinning in atheroma. J Pathol Bacteriol. 1953;66:19-23.10.1002/path.1700660104 Search in Google Scholar

7. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory Enlargement of Human Atherosclerotic Coronary Arteries. N Engl J Med. 1987;316:1371-1375.10.1056/NEJM198705283162204 Search in Google Scholar

8. Hermiller JB, Tenaglia AN, Kisslo KB, et al. In vivo validation of compensatory enlargement of atherosclerotic coronary arteries. Am J Cardiol. 1993;71:665-668.10.1016/0002-9149(93)91007-5 Search in Google Scholar

9. Varnava AM, Mills PG, Davies MJ. Relationship Between Coronary Artery Remodeling and Plaque Vulnerability. Circulation. 2002;105:939-943.10.1161/hc0802.10432711864922 Search in Google Scholar

10. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and Direction of Arterial Remodeling in Stable Versus Unstable Coronary Syndromes: An Intravascular Ultrasound Study. Circulation. 2000;101:598-603.10.1161/01.CIR.101.6.59810673250 Search in Google Scholar

11. Nishioka T, Luo H, Eigler NL, Berglund H, Kim C-J, Siegel RJ. Contribution of inadequate compensatory enlargement to development of human coronary artery stenosis: An in vivo intravascular ultrasound study. J Am Coll Cardiol. 1996;27:1571-1576.10.1016/0735-1097(96)00071-X Search in Google Scholar

12. Mintz GS, Kent KM, Pichard AD, Satler LF, Popma JJ, Leon MB. Contribution of Inadequate Arterial Remodeling to the Development of Focal Coronary Artery Stenoses: An Intravascular Ultrasound Study. Circulation. 1997;95:1791-1798.10.1161/01.CIR.95.7.1791 Search in Google Scholar

13. Hakim D, Abdallah M, Effat M, Al Solaiman F, Alli O, Leesar MA. A new intravascular ultrasound-guided stenting strategy compared with angiography on stent expansion and procedural outcomes in patients with positive lesion remodeling. Catheter Cardiovasc Interv. 2021;97:237-244.10.1002/ccd.28727 Search in Google Scholar

14. Galal H, Rashid T, Alghonaimy W, Kamal D. Detection of positively remodeled coronary artery lesions by multislice CT and its impact on cardiovascular future events. Egypt Heart J. 2019;71:26.10.1186/s43044-019-0029-8 Search in Google Scholar

15. Reddy S, Rao K R, Kashyap JR, et al. Impact of plaque burden and composition on coronary slow flow in ST-segment elevation myocardial infarction undergoing percutaneous coronary intervention: intravascular ultrasound and virtual histology analysis. Acta Cardiol. 2020;1-11.10.1080/00015385.2020.1767842 Search in Google Scholar

16. Rodriguez-Granillo GA. Coronary artery remodelling is related to plaque composition. Heart. 2005;92:388-391.10.1136/hrt.2004.057810 Search in Google Scholar

17. Inaba S, Mintz GS, Farhat NZ, et al. Impact of Positive and Negative Lesion Site Remodeling on Clinical Outcomes. JACC Cardiovasc Imaging. 2014;7:70-78.10.1016/j.jcmg.2013.10.007 Search in Google Scholar

18. Gussenhoven EJ, Geselschap JH, van Lankeren W, Posthuma DJ, van der Lugt A. Remodeling of Atherosclerotic Coronary Arteries Assessed With Intravascular Ultrasound In Vitro. Am J Cardiol. 1997;79:699-702.10.1016/S0002-9149(96)00849-1 Search in Google Scholar

19. Nakamura M, Nishikawa H, Mukai S, et al. Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol. 2001;37:63-69.10.1016/S0735-1097(00)01097-4 Search in Google Scholar

20. Eckert J, Schmidt M, Magedanz A, Voigtländer T, Schmermund A. Coronary CT Angiography in Managing Atherosclerosis. Int J Mol Sci. 2015;16:3740-3756.10.3390/ijms16023740434692325671814 Search in Google Scholar

21. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the Vulnerable Plaque. J Am Coll Cardiol. 2006;47:C13-C18.10.1016/j.jacc.2005.10.06516631505 Search in Google Scholar

22. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276-1282.10.1056/NEJM1997050133618029113930 Search in Google Scholar

23. Gueret P, Deux J-F, Bonello L, et al. Diagnostic Performance of Computed Tomography Coronary Angiography (from the Prospective National Multicenter Multivendor EVASCAN Study). Am J Cardiol. 2013;111:471-478.10.1016/j.amjcard.2012.10.02923261002 Search in Google Scholar

24. Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41:407-477.10.1093/eurheartj/ehz42531504439 Search in Google Scholar

25. The SCOT-HEART Investigators. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N Engl J Med. 2018;379:924-933.10.1056/NEJMoa180597130145934 Search in Google Scholar

26. Hoffmann U, Ferencik M, Udelson JE, et al. Prognostic Value of Noninvasive Cardiovascular Testing in Patients With Stable Chest Pain: Insights From the PROMISE Trial (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation. 2017;135:2320-2332.10.1161/CIRCULATIONAHA.116.024360594605728389572 Search in Google Scholar

27. Mark DB, Shaw L, Harrell FE, et al. Prognostic Value of a Treadmill Exercise Score in Outpatients with Suspected Coronary Artery Disease. N Engl J Med. 1991;325:849-853.10.1056/NEJM1991091932512041875969 Search in Google Scholar

28. Motoyama S, Sarai M, Harigaya H, et al. Computed Tomographic Angiography Characteristics of Atherosclerotic Plaques Subsequently Resulting in Acute Coronary Syndrome. J Am Coll Cardiol. 2009;54:49-57.10.1016/j.jacc.2009.02.06819555840 Search in Google Scholar

29. Conte E, Annoni A, Pontone G, et al. Evaluation of coronary plaque characteristics with coronary computed tomography angiography in patients with non-obstructive coronary artery disease: a long-term follow-up study. Eur Heart J – Cardiovasc Imaging. 2017;18:1170-1178. Search in Google Scholar

30. Motoyama S, Ito H, Sarai M, et al. Plaque Characterization by Coronary Computed Tomography Angiography and the Likelihood of Acute Coronary Events in Mid-Term Follow-Up. J Am Coll Cardiol. 2015;66:337-346.10.1016/j.jacc.2015.05.06926205589 Search in Google Scholar

31. Han D, Berman DS, Miller RJH, et al. Association of Cardiovascular Disease Risk Factor Burden With Progression of Coronary Atherosclerosis Assessed by Serial Coronary Computed Tomographic Angiography. JAMA Netw Open. 2020;3:e2011444.10.1001/jamanetworkopen.2020.11444738200132706382 Search in Google Scholar

32. Williams MC, Moss AJ, Dweck M, et al. Coronary Artery Plaque Characteristics Associated With Adverse Outcomes in the SCOT-HEART Study. J Am Coll Cardiol. 2019;73:291-301.10.1016/j.jacc.2018.10.066 Search in Google Scholar

33. Nazir MS, Nicol E. The SCOT-HEART trial: cardiac CT to guide patient management and improve outcomes. Cardiovasc Res. 2019;115:e88-e90.10.1093/cvr/cvz173 Search in Google Scholar

34. Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM. Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol. 2001;38:297-306.10.1016/S0735-1097(01)01374-2 Search in Google Scholar

35. Serruys PW, Katagiri Y, Sotomi Y, et al. Arterial Remodeling After Bioresorbable Scaffolds and Metallic Stents. J Am Coll Cardiol. 2017;70:60-74.10.1016/j.jacc.2017.05.02828662808 Search in Google Scholar

36. Ono M, Kawashima H, Hara H, et al. Advances in IVUS/OCT and Future Clinical Perspective of Novel Hybrid Catheter System in Coronary Imaging. Front Cardiovasc Med. 2020;7:119.10.3389/fcvm.2020.00119741113932850981 Search in Google Scholar

37. de Boer S, Baran Y, Garcia-Garcia HM, et al. The European Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis - Intravascular Ultrasound (ATHEROREMO-IVUS) study. EuroIntervention. 2018;14:194-203.10.4244/EIJ-D-17-0018028943493 Search in Google Scholar

38. Cheng JM, Garcia-Garcia HM, de Boer SPM, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Eur Heart J. 2014;35:639-647.10.1093/eurheartj/eht48424255128 Search in Google Scholar

39. Yamamoto K, Sakakura K, Akashi N, et al. Association of slow flow with clinical factors in intravascular ultrasound-guided percutaneous coronary intervention for patients with left main trunk-acute myocardial infarction. J Cardiol. 2020;75:53-59.10.1016/j.jjcc.2019.06.00831324571 Search in Google Scholar

40. Hong YJ, Jeong MH, Choi YH, et al. Positive remodeling is associated with more plaque vulnerability and higher frequency of plaque prolapse accompanied with post-procedural cardiac enzyme elevation compared with intermediate/negative remodeling in patients with acute myocardial infarction. J Cardiol. 2009;53:278-287.10.1016/j.jjcc.2008.12.00619304134 Search in Google Scholar

41. Nakamura T, Kubo N, Ako J, Momomura S-I. Angiographic No-Reflow Phenomenon and Plaque Characteristics by Virtual Histology Intravascular Ultrasound in Patients with Acute Myocardial Infarction. J Intervent Cardiol. 2007;20:335-339.10.1111/j.1540-8183.2007.00282.x17880329 Search in Google Scholar

42. Li J, Wu L, Tian X, Zhang J, Shi Y. Intravascular Ultrasound Observation of the Mechanism of No-Reflow Phenomenon in Acute Myocardial Infarction. Zhang Z, ed. PLoS One. 2015;10:e0119223.10.1371/journal.pone.0119223 Search in Google Scholar

43. Nissen SE, Gurley JC, Grines CL, et al. Intravascular ultrasound assessment of lumen size and wall morphology in normal subjects and patients with coronary artery disease. Circulation. 1991;84:1087-1099.10.1161/01.CIR.84.3.1087 Search in Google Scholar

44. Ali ZA, Maehara A, Généreux P, et al. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. The Lancet. 2016;388:2618-2628.10.1016/S0140-6736(16)31922-5 Search in Google Scholar

45. Xu J, Lo S. Fundamentals and role of intravascular ultrasound in percutaneous coronary intervention. Cardiovasc Diagn Ther. 2020;10:1358-1370.10.21037/cdt.2020.01.15766693333224762 Search in Google Scholar

46. Bec J, Phipps JE, Gorpas D, et al. In vivo label-free structural and biochemical imaging of coronary arteries using an integrated ultrasound and multispectral fluorescence lifetime catheter system. Sci Rep. 2017;7:8960.10.1038/s41598-017-08056-0556654628827758 Search in Google Scholar

47. Reddy S, Kadiyala V, Kashyap JR, et al. Comparison of Intravascular Ultrasound Virtual Histology Parameters in Diabetes versus Non-Diabetes with Acute Coronary Syndrome. Cardiology. 2020;145:570-577.10.1159/00050888632726774 Search in Google Scholar

48. Jensen LO, Thayssen P, Mintz GS, et al. Intravascular ultrasound assessment of remodelling and reference segment plaque burden in type-2 diabetic patients. Eur Heart J. 2007;28:1759-1764.10.1093/eurheartj/ehm17517540850 Search in Google Scholar

49. Nicholls SJ, Tuzcu EM, Kalidindi S, et al. Effect of Diabetes on Progression of Coronary Atherosclerosis and Arterial Remodeling. J Am Coll Cardiol. 2008;52:255-262.10.1016/j.jacc.2008.03.05118634979 Search in Google Scholar

50. Du R, Zhang RY, Lu L, et al. Increased glycated albumin and decreased esRAGE levels in serum are related to negative coronary artery remodeling in patients with type 2 diabetes: an Intravascular ultrasound study. Cardiovasc Diabetol. 2018;17:149.10.1186/s12933-018-0792-y625843830482197 Search in Google Scholar

51. Kim S-H, Moon J-Y, Lim YM, et al. Association of insulin resistance and coronary artery remodeling: an intravascular ultrasound study. Cardiovasc Diabetol. 2015;14:74.10.1186/s12933-015-0238-8447260926047939 Search in Google Scholar

52. Liu J, Wang S, Cui C, et al. The association between glucose-related variables and plaque morphology in patients with ST-segment elevated myocardial infarction. Cardiovasc Diabetol. 2020;19:109.10.1186/s12933-020-01074-9734163632641042 Search in Google Scholar

eISSN:
2501-8132
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine