This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
H. H. Radamson et. al, “CMOS scaling for the 5 nm node and beyond: device, process and technology,” Nanomaterials, vol. 14, no. 10, pp. 837, 2024. doi: 10.3390/nano14100837Search in Google Scholar
C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum cellular automata,” Nanotechnology, vol. 4, no. 1, pp. 49, 1993. doi: 10.1088/0957-4484/4/1/004Search in Google Scholar
P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” Journal of Applied Physics, vol. 75, no. 3, pp. 1818–1825, 1994. doi: 10.1063/1.356375Search in Google Scholar
C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541–557, 1997. doi: 10.1109/5.573740Search in Google Scholar
P. Megha, B. S. Premananda and N. Kamat, “Area and energy optimized Hamming encoder and decoder for nano-communication,” Journal of Electrical Engineering, vol. 75, no. 3, pp. 229–236, 2024. doi: 10.2478/jee-2024-0028Search in Google Scholar
A. Khan, M. C. Parameshwara and A. N. Bahar, “Energy estimation of QCA circuits: An investigation with multiplexers,” Journal of Electrical Engineering, vol. 73, no. 4, pp. 276-283, 2022. doi:10.2478/jee-2022-0036Search in Google Scholar
M. Gholami and Z. Amirzadeh, “Low-power, highspeed, and area-efficient sequential circuits by quantum-dot cellular automata: T-latch and counter study,” Frontiers of Information and Electronic Engineering, vol. 24, no. 3, pp. 457–459, 2024. doi: 10.1631/FITEE.2200361Search in Google Scholar
A. Khan, S. Mandal and R. Arya, “Simple design of QCA-based T-flipflop with energy dissipation analysis for nanocomputing,” International Journal of Ad Hoc and Ubiquitous Computing (IJAHUC), vol. 44, no. 4, pp. 233–239, 2023. doi: 10.1504/IJAHUC.2023.135108Search in Google Scholar
A. Khan, “Elementary design and analysis of QCA-based T-flipflop for nanocomputing,” Journal of Electrical Engineering, vol. 74, no. 5, pp. 336–343, 2023. doi: 10.2478/jee-2023-0041Search in Google Scholar
S. Husain and N. Gupta, “Harnessing fault tolerant capabilities of USE clocking scheme for designing QCA flip-flops,” 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 104–109, 2023.Search in Google Scholar
A. Yan, R. Liu, Z. Huang, P. Girard, and X. Wen, “Designs of level-sensitive T flip-flops and polar encoders based on two XOR/XNOR gates,” Electronics, vol. 11, no. 10, pp. 1658, 2022. doi: 10.3390/electronics11101658Search in Google Scholar
S. R. Heikalabad, “Non-coplanar counter in quantum-dot cellular automata,” The European Physical Journal Plus, vol. 136, pp. 209, 2021. doi: 10.1140/epjp/s13360-021-01198-1Search in Google Scholar
R. Singh, S. S. Das, V. Sarada, “Design of a compact negative-edge triggered t flip-flop in QCA technology,” International Journal of Electrical Engineering & Technology (IJEET), vol. 11, no. 2, pp. 139–146, 2020.Search in Google Scholar
A. H. Majeed, E. Alkaldy, M. S. Zainal, and D. B. M. Nor, “Synchronous counter design using novel level sensitive T-FF in QCA technology,” Journal of Low Power Electronics and Applications, vol. 9, no. 3, pp. 27, 2019. doi: 10.3390/jlpea9030027Search in Google Scholar
A. N. Bahar, R. Laajimi, M. Abdullah-Al-Shaf and K. Ahmed, “Toward efficient design of flip-flops in quantum-dot cellular automata with power analysis,” International Journal of Theoretical Physics, vol. 57, pp. 3419–3428, 2018. doi: 10.1007/s10773-018-3855-7Search in Google Scholar
N. Samanvita, S. Gatade, N. M. Sudhakar and S. Raman, “Quantum dot cellular automata-based simulation and design of 2-bit up and down counters,” 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT), pp. 1–6, 2024. doi: 10.1109/ICDCOT61034.2024.10515578Search in Google Scholar
A. N. Bahar, S. Waheed, N. Hossain and M. Asaduzzaman, “A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis,” Alexandria Engineering Journal, vol. 57, no. 2, pp. 729–738, 2018. doi: 10.1016/j.aej.2017.01.022Search in Google Scholar
K. Walus, T. J. Dysart, G. A. Jullien and R. Budiman, “QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata,” IEEE Transactions on Nanotechnology, vol. 3, no. 1, pp. 26–31, 2004. doi: 10.1109/TNANO.2003.820815Search in Google Scholar
S. Srivastava, S. Bhanja, and A. Asthana, “QCAPro an error power estimation tool for QCA circuit design,” Proceedings IEEE International Symposium on Circuits and Systems, pp. 2377–2380, 2011. doi: 10.1109/ISCAS.2011.5938081Search in Google Scholar
F. S. Torres, R. Wille, P. Niemann, and R. Drechsler, “An energy-aware model for the logic synthesis of quantum-dot cellular automata,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp. 3031–3041, 2018. doi: 10.1109/TCAD.2018.2789782Search in Google Scholar
A. Khan and R. K. Shaw, “Multilayered XOR gate: a quantum dot cellular automata (QCA) approach,” Journal of The Institution of Engineers (India): Series B, 2024. doi: 10.1007/s40031-024-01160-6Search in Google Scholar
M. Patidar and N. Gupta, “Efficient design and implementation of a robust coplanar crossover and multilayer hybrid full adder– subtractor using QCA technology,” The Journal of Supercomputing, vol. 77, no. 8, pp. 7893–7915, 2021. doi: 10.1007/s11227-020-03592-5Search in Google Scholar
R. Chakraborty, D. De, A. Khan, C. Mukherjee and S. Pramanik, “Effect of temperature and kink energy in multilevel digital circuit using Quantum dot cellular automata,” 2012 5th International Conference on Computers and Devices for Communication (CODEC), pp. 1–4, 2012. doi: 10.1109/CODEC.2012.6509297Search in Google Scholar
Y. Ardesi, G. Beretta, M. Vacca, G. Piccinini and M. Graziano, “Impact of Molecular Electrostatics on Field-Coupled Nanocomputing and Quantum-Dot Cellular Automata Circuits,” Electronics, vol. 11, no. 2, pp. 276, 2022. doi: 10.3390/electronics11020276Search in Google Scholar