1. bookVolume 73 (2022): Issue 4 (August 2022)
Journal Details
License
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English
Open Access

High-performance tri-band graphene plasmonic microstrip patch antenna using superstrate double-face metamaterial for THz communications

Published Online: 22 Sep 2022
Volume & Issue: Volume 73 (2022) - Issue 4 (August 2022)
Page range: 226 - 236
Received: 16 Jun 2022
Journal Details
License
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English

[1] M.Alsabah,M. A.Naser,B.M.Mahmmod, S. H. Abdulhussain, M.R. Eissa, A.Al-Baidhani, N.K. Noordin, S. M. Sait, K. A. Al-Utaibi, and F. Hashim, “6G Wireless Communications Networks: A comprehensive survey”, IEEE Access, vol.9, pp. 148191 148243, 2021. Search in Google Scholar

[2] L. Zhu, Z. Xiao, X.-G. Xia, and D. O. Wu, “Millimeter-Wave Communications With Non-Orthogonal Multiple Access for B5G/6G”, IEEE Access, vol. 7, pp. 116123-116132, 2019. Search in Google Scholar

[3] M. W. Akhtar, S. A. Hassan, R. Ghaffar, H. Jung, S. Garg, and M. S. Hossain, “The shift to 6G communications: vision and requirements”, Human-centric Computing and Information Sciences, vol. 10, no. 1, 2020.10.1186/s13673-020-00258-2 Search in Google Scholar

[4] Y. Luo, Q. Zeng, X. Yan, Y. Wu, Q. Lu, C. Zheng, N. Hu, W. Xie, and X. Zhang, “Graphene-Based Multi-Beam Reconfigurable THz Antennas”, IEEE Access, vol. 7, pp. 30802-30808, 2019. Search in Google Scholar

[5] S.A.Khaleel,E.K.I.Hamad, N.O. Parchin, and M. B. Saleh, “MTM-Inspired Graphene-Based THz MIMO Antenna Configurations Using Characteristic Mode Analysis for 6G/IoT Applications”, Electronics, vol. 11, no. 14, pp. 2152, 2022.10.3390/electronics11142152 Search in Google Scholar

[6] W. Ali, E. Hamad, M. Bassiuny, and M. J. R. Hamdallah, “Complementary split ring resonator based triple band microstrip antenna for WLAN/WiMAX applications”, Radioengineering, vol. 26, no. 1, pp. 78-84, 2017.10.13164/re.2017.0078 Search in Google Scholar

[7] S. Dash, A. J. P. Patnaik, “Behavior of graphene based planar antenna at microwave and terahertz frequency”, Photonics and Nanostructures–Fundamentals and Applications, vol. 40, pp. 100800, 2020. Search in Google Scholar

[8] B. Zhang, J. M. Jornet, I. F. Akyildiz, and Z. P. Wu, “Mutual coupling reduction for ultra-dense multi-band plasmonic nano-antenna arrays using graphene-based frequency selective surface”, IEEE Access, vol. 7, pp. 33214-33225, 2019. Search in Google Scholar

[9] S. Dash, A. Patnaik, and B. K. Kaushik, “Performance enhancement of graphene plasmonic nanoantennas for THz communication”, IET Microwaves, Antennas & Propagation, vol. 13, no. 1, pp. 71-75, 2019.10.1049/iet-map.2018.5320 Search in Google Scholar

[10] A. A. A. Aziz, A. A. Ibrahim, and M. A. Abdalla, “Tunable Array Antenna with CRLH Feeding Network Based on Graphene”, IETE Journal of Research, pp. 1-9, 2019. Search in Google Scholar

[11] E. K. Hamad and A. J. R. Abdelaziz, “Performance of a meta-material-based 1 2 microstrip patch antenna array for wireless communications examined by characteristic mode analysis”, Radioengineering, vol. 28, no. 4, pp. 681, 2019.10.13164/re.2019.0680 Search in Google Scholar

[12] M. Puentes, M. Maasch, M. Schubler, and R. J. Jakoby, “Frequency multiplexed 2-dimensional sensor array based on split-ring resonators for organic tissue analysis”, IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1720-1727, 2012. Search in Google Scholar

[13] A. H. Reja and S. N. Ahmad, “Design of Multiband Metamaterial Microwave BPFs for Microwave Wireless Applications”, Advances in Intelligent Informatics, : Springer, pp. 179-192, 2015.10.1007/978-3-319-11218-3_18 Search in Google Scholar

[14] D. Yan, M. Meng, J. Li, and X. Li, “Graphene-assisted narrow bandwidth dual-band tunable terahertz metamaterial absorber”, Front. Phys, vol. 8, 2020.10.3389/fphy.2020.00306 Search in Google Scholar

[15] Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region”, Photonics Research, vol. 7, no. 1, pp. 80-88, 2019.10.1364/PRJ.7.000080 Search in Google Scholar

[16] W. Wu, B. Yuan, B. Guan, and T. Xiang, “A bandwidth enhancement for metamaterial microstrip antenna”, Microwave and Optical Technology Letters, vol. 59, no. 12, pp. 3076-3082, 2017. Search in Google Scholar

[17] A. B. Abdel-Rahman and A. A. Ibrahim, “Metamaterial enhances microstrip antenna gain”, Microwaves and RF, vol. 55, no, 7, pp. 46-50, 2016. Search in Google Scholar

[18] E. K. Hamad, W. A. Ali, M. Z. Hamdalla, and M. A. Bassiuny, “High gain triple band microstrip antenna based on metamaterial super lens for wireless communication applications”, International Conference on Innovative Trends in Computer Engineering (ITCE), pp. 197-204: IEEE, 2018.10.1109/ITCE.2018.8316624 Search in Google Scholar

[19] D. Li, Z. Szabó, X. Qing, E.-P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate”, IEEE Transactions on Antennas and Propagation, vol. 60, no. 12, pp. 6018-6023, 2012. Search in Google Scholar

[20] P. Das, G. J. O. Varshney, “Analysis of tunable THz antennas integrated with polarization insensitive frequency selective surfaces”, Optical and Quantum Electronics, vol. 53, no. 11, pp. 1-21, 2021.10.1007/s11082-021-03320-0 Search in Google Scholar

[21] V. Dhasarathan, N. Bilakhiya, J. Parmar, M. Ladumor, and S. K. Patel, “Numerical investigation of graphene-based metamaterial microstrip radiating structure”, Materials Research Express, vol. 7, no. 1, pp. 016203, 2020. Search in Google Scholar

[22] P. Das and G. Varshney, “Gain enhancement of dual-band terahertz antenna using reflection-based frequency selective surfaces”, Optical and Quantum Electronics, vol. 54, no. 3, pp. 1-23, 2022.10.1007/s11082-022-03548-4 Search in Google Scholar

[23] G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene”, IEEE Trans. Antennas and Propagation, vol. 56, no. 3, pp. 747-757, 2008.10.1109/TAP.2008.917005 Search in Google Scholar

[24] X. Qin, J. Chen, C. Xie, N. Xu, and J. Shi, “A tunable THz dipole antenna based on graphene”, IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp. 1-3: IEEE, 2016. Search in Google Scholar

[25] I. Llatser, et al, “Graphene-based nano-patch antenna for terahertz radiation, Photonics Nanostruct., vol. 10, no. 4, pp. 353-358, 2012.10.1016/j.photonics.2012.05.011 Search in Google Scholar

[26] M. Gatte, P. J. Soh, H. Rahim, R. Ahmad, and M. F. A. Malek, “The performance improvement of THz antenna via modeling and characterization of doped graphene”, Prog. electromagn. res. M, vol. 49, pp. 21-31, 2016.10.2528/PIERM16050405 Search in Google Scholar

[27] M. J. Chashmi, P. Rezaei, and N. J. O. Kiani, “Reconfigurable graphene-based V-shaped dipole antenna: From quasi-isotropic to directional radiation pattern”, Optik, vol. 184, pp. 421-427, 2019.10.1016/j.ijleo.2019.04.125 Search in Google Scholar

[28] H. B. Krid, Z. Houaneb, and H. Zairi, “Reconfigurable graphene annular ring antenna for medical and imaging applications”, Progress In Electromagnetics Research M, vol. 89, pp. 53-62, 2020.10.2528/PIERM19110803 Search in Google Scholar

[29] R. W. Ziolkowski “Design, fabrication, and testing of double negative metamaterials”, IEEE Trans. Antennas and Propagation, vol. 51, no. 7, pp. 1516-1529, 2003. Search in Google Scholar

[30] M. A. K. Khan, T. A. Shaem, and M. A. Alim, “Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation”, Optik, vol. 194, pp. 163012, 2019. Search in Google Scholar

[31] S. M. Shamim, M. S. Uddin, M. R. Hasan, and M. Samad, “Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications”, Journal of Computational Electronics, vol. 20, no. 1, pp. 604-610, 2021.10.1007/s10825-020-01587-2 Search in Google Scholar

[32] M. A. K. Khan, M. I. Ullah, R. Kabir, and M. A. Alim, “High-Performance Graphene Patch Antenna with Superstrate Cover for Terahertz Band Application”, Plasmonics, vol. 15, pp. 1719-1727, 2020. Search in Google Scholar

[33] M. Shalini and M. G. Madhan, “Design and analysis of a dual-polarized graphene based microstrip patch antenna for terahertz applications”, Optik, vol. 194, pp. 163050, 2019. Search in Google Scholar

[34] S. S. Efazat, R. Basiri, and S. V. Al-Din Makki, “The gain enhancement of a graphene loaded reconfigurable antenna with non–uniform metasurface in terahertz band”, Optik, vol. 183, pp. 1179-1190, 2019. Search in Google Scholar

[35] M. J. O. Shalini, “Performance predictions of slotted graphene patch antenna for multi-band operation in terahertz regime”, Optik, vol. 204, pp. 164223, 2020. Search in Google Scholar

[36] G. Bansal, A. Marwaha, A. Singh, R. Bala and S. Marwaha, “A triband slotted bow-tie wideband THz antenna design using graphene for wireless applications”, Optik, vol. 185, pp. 1163-1171, 2019. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo