1. bookVolume 72 (2021): Issue 4 (August 2021)
Journal Details
License
Format
Journal
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English
access type Open Access

Design of dual-band implanted patch antenna system for bio-medical applications

Published Online: 13 Sep 2021
Page range: 240 - 248
Received: 21 Jul 2021
Journal Details
License
Format
Journal
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English
Abstract

In this paper, a miniaturized implantable antenna system for biomedical applications is presented. The system consists of almost two similar patch antennas, named internal and external. The internal antenna is implanted inside the body at a depth of 2 mm, and the external antenna is to be attached to the body aligned with the internal one. The antenna system consists of implant-side antenna with dimensions are 10.25×10.25×1.27 mm3 , while the external antenna dimensions are 11.1×11.1×1.27 mm3. The proposed antennas designs showed dual resonant frequency on ISM bands (ie , 915 MHz and 2450 MHz ). The computed -10 dB bandwidth considering three-layer human phantom demonstrates that a bandwidth of 870 to 970 MHz and 2.38 to 2.47 GHz for internal and external antennas are achieved. The Specific Absorption Rate (SAR) has been considered for health care consideration. The measured and simulated scattering parameters are compared, and good agreements are achieved. The proposed antenna system is simulated and investigated for biomedical applications suitability.

Keywords

[1] A. Kiourti, K. A. Psathas, J. R. Costa, C. A. Fernandes, and K. S. Nikita, “Dual-band implantable antennas for medical telemetry: A fast design methodology and validation for intra-cranial pressure monitoring”, Prog. Electromagn. Res., vol. 141, no.May, pp. 161-183, 2013, doi: 10.2528/PIER13051706. Search in Google Scholar

[2] T. G. Abouelnaga and A. F. Desouky, “UWB Antenna with All Band Suitable Radiation Pattern for Breast Cancer Detection”, Int. J. Eng. Technol., vol. 9, no. 2, pp. 720-737, 2017, doi: 10.21817/ijet/2017/v9i2/170902082. Search in Google Scholar

[3] W. Greatbatch and C. F. Holmes, “History of implantable devices”, IEEE Eng. Med. Biol. Mag., vol. 10, no. 3, pp. 38-41, 2002, doi: 10.1109/51.84185. Search in Google Scholar

[4] A. Kiourti and K. S. Nikita, “A review of implantable patch antennas for biomedical telemetry: Challenges and solutions”, IEEE Antennas Propag. Mag., vol. 54, no. 3, pp. 210-228, 2012, doi: 10.1109/MAP.2012.6293992. Search in Google Scholar

[5] K. Kato, H. Matsuki, F. Sato, T. Satoh, and N. Handa, “Duplex communicable implanted antenna for magnetic direct feeding method: Functional electrical stimulation”, J. Appl. Phys., vol. 105, no. 7, pp. 2007-2010, 2009, doi: 10.1063/1.3068642. Search in Google Scholar

[6] D. Wessels, “Implantable pacemakers and defibrillators: Device overview & EMI considerations”, IEEE Int. Symp. Electromagn. Compat., vol. 2, pp. 911-915, 2002, doi: 10.1109/isemc.2002.1032 815. Search in Google Scholar

[7] A. Vorobyov, C. Hennemann, A. Vasylchenko, J. D. Decotignie, and J. Baumgartner, “Folded loop antenna as a promissing solution for a cochlear implant”, 8 th Eur. Conf. Antennas Propagation, EuCAP 2014, no. EuCAP, pp. 1735-1738, 2014, doi: 10.1109/EuCAP.2014.6902127. Search in Google Scholar

[8] M. C. Shults, R. K. Rhodes, S. J. Updike, B. J. Gilligan, and W. N. Reining, “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Trans. Biomed. Eng., vol. 41, no. 10, pp. 937-942, 1994, doi: 10.1109/10.324525. Search in Google Scholar

[9] K. Gosalia, G. Lazzi, and M. Humayun, “Investigation of a microwave data telemetry link for a retinal prosthesis”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 8 II, pp. 1925-1933, 2004, doi: 10.1109/TMTT.2004.832007. Search in Google Scholar

[10] D. H. Jiang and Z. Hao, ed. Werner, Electromagnetics of body area networks: antennas, propagation, and RF systems Wiley-IEEE Press, 2016. Search in Google Scholar

[11] N. Vidal, S. Curto, J. M. Lopez Villegas, J. Sieiro, and F. M. Ramos, “Detuning study of implantable antennas inside the human body”, Prog. Electromagn. Res., vol. 124, no. January, pp. 265-283, 2012, doi: 10.2528/PIER11120515. Search in Google Scholar

[12] 64 Rules Regulations, “Medical Implant Communications Service (MICS) Federal Register”, Fed. Regist., vol. 75, no. 180, pp. 56928-56935, 2010, doi: 10.1016/0196-335×(80)90058-8. Search in Google Scholar

[13] P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, and P. Dario, “An implantable telemetry platform system for in vivo monitoring of physiological parameters”, IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 3, pp. 271-278, 2004, doi: 10.1109/TITB.2004. 834389. Search in Google Scholar

[14] H. A. Elsadek, E. A. Abdallah, D. M. Elsheakh, and H. B. E. D. El-Shaarawy, “Microstrip antennas: Future trends and new applications”, Int. J. Antennas Propag., vol. 2013, pp. 2013-2014, 2013, doi: 10.1155/2013/890764. Search in Google Scholar

[15] R. Matthes, J. H. Bernhardt, and A. F. McKinlay, International Commission on Non-Ionizing Radiation Protection.,,, vol. 74, no. 4. 1999. Search in Google Scholar

[16] W. Ali, E. Hamad, M. Bassiuny, and M. Hamdallah, “Complementary split ring resonator based triple band microstrip antenna for WLAN/WiMAX applications”, Radioengineering, vol. 26, no. 1, pp. 78-84, 2017, doi: 10.13164/re.2017.0078. Search in Google Scholar

[17] X. Y. Liu, Z. T. Wu, Y. Fan, and E. M. Tentzeris, “A Miniaturized CSRR Loaded Wide-Beamwidth Circularly Polarized Implantable Antenna for Subcutaneous Real-Time Glucose Monitoring”, IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 577-580, 2017, doi: 10.1109/LAWP.2016.2590477. Search in Google Scholar

[18] S. Das and D. Mitra, “A compact wideband flexible implantable slot antenna design with enhanced gain”, IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4309-4314, 2018, doi: 10.1109/TAP.20 18.2836463. Search in Google Scholar

[19] R. Li and S. Xiao, “Compact slotted semi-circular antenna for implantable medical devices”, Electron. Lett., vol. 50, no. 23, pp. 1675-1677, 2014, doi: 10.1049/el.2014.3371. Search in Google Scholar

[20] K. Guido and A. Kiourti, “Wireless Wearables and Implants: A Dosimetry Review”, Bioelectromagnetics, vol. 41, no. 1, pp. 3-20, 2020, doi: 10.1002/bem.22240. Search in Google Scholar

[21] G. Singh and J. Kaur, “Skin and brain implantable inset-fed antenna at ISM band for wireless biotelemetry applications”, Microw. Opt. Technol. Lett., vol. 63, no. 2, pp. 510-515, 2021, doi: 10.1002/mop.32603. Search in Google Scholar

[22] R. Li, Y. X. Guo, B. Zhang, and G. Du, “A Miniaturized Circularly Polarized Implantable Annular-Ring Antenna”, IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 2566-2569, 2017, doi: 10.1109/LAWP.2017.2734246. Search in Google Scholar

[23] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 1001-1008, 2008, doi: 10.1109/TMTT.20 08.919373. Search in Google Scholar

[24] Constantine A. Balanis, Antenna Theory: Analysis and Design, 3 rd ed. Wiely, 2010. Search in Google Scholar

[25] A. Sharma, E. Kampianakis, and M. S. Reynolds, “A Dual-Band HF and UHF Antenna System for Implanted Neural Recording and Stimulation Devices”, IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 493-496, 2017, doi: 10.1109/LAWP.2016.25856 50. Search in Google Scholar

[26] A. Basir and H. Yoo, “Efficient Wireless Power Transfer System with a Miniaturized Quad-Band Implantable Antenna for Deep-Body Multitasking Implants”, IEEE Trans. Microw. Theory Tech., vol. 68, no. 5, pp. 1943-1953, 2020, doi: 10.1109/TMTT.2020.296 5938. Search in Google Scholar

[27] P. Bose, A. Khaleghi, M. Albatat, J. Bergsland, and I. Balasingham, “RF Channel Modeling for Implant-to-Implant Communication and Implant to Subcutaneous Implant Communication for Future Leadless Cardiac Pacemakers”, IEEE Trans. Biomed. Eng., vol. 65, no. 12, pp. 2798-2807, 2018, doi: 10.1109/TBME. 2018.2817690. Search in Google Scholar

[28] H. Liu, J. Shi, S. Wu, X. Wang and J. Wang, “Dual-Band Monopole -Helix Antenna System for MHz-Band Implant Body Area Networks”, 2019 IEEE Int. Work. Electromagn. Appl. Student Innov. Compet. iWEM 2019 - Proc., pp. 1-2, 2019, doi: 10.1109/iWEM.2019.8887877. Search in Google Scholar

[29] G. Sun, B. Muneer, Y. Li, and Q. Zhu, “Ultracompact Implantable Design with Integrated Wireless Power Transfer and RF Transmission Capabilities”, IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2, pp. 281-291, 2018, doi: 10.1109/TB- CAS.2017.27876 49. Search in Google Scholar

[30] W. Xia, K. Saito, M. Takahashi, and K. Ito, “Performances of an implanted cavity slot antenna embedded in the human arm”, IEEE Trans. Antennas Propag., vol. 57, no. 4 Part 1, pp. 894-899, 2009, doi: 10.1109/TAP.2009.2014579. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo