Cite

[1] A. Kiourti, K. A. Psathas, J. R. Costa, C. A. Fernandes, and K. S. Nikita, “Dual-band implantable antennas for medical telemetry: A fast design methodology and validation for intra-cranial pressure monitoring”, Prog. Electromagn. Res., vol. 141, no.May, pp. 161-183, 2013, doi: 10.2528/PIER13051706.10.2528/PIER13051706 Search in Google Scholar

[2] T. G. Abouelnaga and A. F. Desouky, “UWB Antenna with All Band Suitable Radiation Pattern for Breast Cancer Detection”, Int. J. Eng. Technol., vol. 9, no. 2, pp. 720-737, 2017, doi: 10.21817/ijet/2017/v9i2/170902082.10.21817/ijet/2017/v9i2/170902082 Search in Google Scholar

[3] W. Greatbatch and C. F. Holmes, “History of implantable devices”, IEEE Eng. Med. Biol. Mag., vol. 10, no. 3, pp. 38-41, 2002, doi: 10.1109/51.84185.10.1109/51.8418518238379 Search in Google Scholar

[4] A. Kiourti and K. S. Nikita, “A review of implantable patch antennas for biomedical telemetry: Challenges and solutions”, IEEE Antennas Propag. Mag., vol. 54, no. 3, pp. 210-228, 2012, doi: 10.1109/MAP.2012.6293992.10.1109/MAP.2012.6293992 Search in Google Scholar

[5] K. Kato, H. Matsuki, F. Sato, T. Satoh, and N. Handa, “Duplex communicable implanted antenna for magnetic direct feeding method: Functional electrical stimulation”, J. Appl. Phys., vol. 105, no. 7, pp. 2007-2010, 2009, doi: 10.1063/1.3068642.10.1063/1.3068642 Search in Google Scholar

[6] D. Wessels, “Implantable pacemakers and defibrillators: Device overview & EMI considerations”, IEEE Int. Symp. Electromagn. Compat., vol. 2, pp. 911-915, 2002, doi: 10.1109/isemc.2002.1032 815. Search in Google Scholar

[7] A. Vorobyov, C. Hennemann, A. Vasylchenko, J. D. Decotignie, and J. Baumgartner, “Folded loop antenna as a promissing solution for a cochlear implant”, 8 th Eur. Conf. Antennas Propagation, EuCAP 2014, no. EuCAP, pp. 1735-1738, 2014, doi: 10.1109/EuCAP.2014.6902127.10.1109/EuCAP.2014.6902127 Search in Google Scholar

[8] M. C. Shults, R. K. Rhodes, S. J. Updike, B. J. Gilligan, and W. N. Reining, “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Trans. Biomed. Eng., vol. 41, no. 10, pp. 937-942, 1994, doi: 10.1109/10.324525.10.1109/10.3245257959800 Search in Google Scholar

[9] K. Gosalia, G. Lazzi, and M. Humayun, “Investigation of a microwave data telemetry link for a retinal prosthesis”, IEEE Trans. Microw. Theory Tech., vol. 52, no. 8 II, pp. 1925-1933, 2004, doi: 10.1109/TMTT.2004.832007.10.1109/TMTT.2004.832007 Search in Google Scholar

[10] D. H. Jiang and Z. Hao, ed. Werner, Electromagnetics of body area networks: antennas, propagation, and RF systems Wiley-IEEE Press, 2016. Search in Google Scholar

[11] N. Vidal, S. Curto, J. M. Lopez Villegas, J. Sieiro, and F. M. Ramos, “Detuning study of implantable antennas inside the human body”, Prog. Electromagn. Res., vol. 124, no. January, pp. 265-283, 2012, doi: 10.2528/PIER11120515.10.2528/PIER11120515 Search in Google Scholar

[12] 64 Rules Regulations, “Medical Implant Communications Service (MICS) Federal Register”, Fed. Regist., vol. 75, no. 180, pp. 56928-56935, 2010, doi: 10.1016/0196-335×(80)90058-8. Search in Google Scholar

[13] P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, and P. Dario, “An implantable telemetry platform system for in vivo monitoring of physiological parameters”, IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 3, pp. 271-278, 2004, doi: 10.1109/TITB.2004. 834389. Search in Google Scholar

[14] H. A. Elsadek, E. A. Abdallah, D. M. Elsheakh, and H. B. E. D. El-Shaarawy, “Microstrip antennas: Future trends and new applications”, Int. J. Antennas Propag., vol. 2013, pp. 2013-2014, 2013, doi: 10.1155/2013/890764.10.1155/2013/890764 Search in Google Scholar

[15] R. Matthes, J. H. Bernhardt, and A. F. McKinlay, International Commission on Non-Ionizing Radiation Protection.,,, vol. 74, no. 4. 1999. Search in Google Scholar

[16] W. Ali, E. Hamad, M. Bassiuny, and M. Hamdallah, “Complementary split ring resonator based triple band microstrip antenna for WLAN/WiMAX applications”, Radioengineering, vol. 26, no. 1, pp. 78-84, 2017, doi: 10.13164/re.2017.0078.10.13164/re.2017.0078 Search in Google Scholar

[17] X. Y. Liu, Z. T. Wu, Y. Fan, and E. M. Tentzeris, “A Miniaturized CSRR Loaded Wide-Beamwidth Circularly Polarized Implantable Antenna for Subcutaneous Real-Time Glucose Monitoring”, IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 577-580, 2017, doi: 10.1109/LAWP.2016.2590477.10.1109/LAWP.2016.2590477 Search in Google Scholar

[18] S. Das and D. Mitra, “A compact wideband flexible implantable slot antenna design with enhanced gain”, IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4309-4314, 2018, doi: 10.1109/TAP.20 18.2836463. Search in Google Scholar

[19] R. Li and S. Xiao, “Compact slotted semi-circular antenna for implantable medical devices”, Electron. Lett., vol. 50, no. 23, pp. 1675-1677, 2014, doi: 10.1049/el.2014.3371.10.1049/el.2014.3371 Search in Google Scholar

[20] K. Guido and A. Kiourti, “Wireless Wearables and Implants: A Dosimetry Review”, Bioelectromagnetics, vol. 41, no. 1, pp. 3-20, 2020, doi: 10.1002/bem.22240.10.1002/bem.2224031854006 Search in Google Scholar

[21] G. Singh and J. Kaur, “Skin and brain implantable inset-fed antenna at ISM band for wireless biotelemetry applications”, Microw. Opt. Technol. Lett., vol. 63, no. 2, pp. 510-515, 2021, doi: 10.1002/mop.32603.10.1002/mop.32603 Search in Google Scholar

[22] R. Li, Y. X. Guo, B. Zhang, and G. Du, “A Miniaturized Circularly Polarized Implantable Annular-Ring Antenna”, IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 2566-2569, 2017, doi: 10.1109/LAWP.2017.2734246.10.1109/LAWP.2017.2734246 Search in Google Scholar

[23] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring”, IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 1001-1008, 2008, doi: 10.1109/TMTT.20 08.919373. Search in Google Scholar

[24] Constantine A. Balanis, Antenna Theory: Analysis and Design, 3 rd ed. Wiely, 2010. Search in Google Scholar

[25] A. Sharma, E. Kampianakis, and M. S. Reynolds, “A Dual-Band HF and UHF Antenna System for Implanted Neural Recording and Stimulation Devices”, IEEE Antennas Wirel. Propag. Lett., vol. 16, no. c, pp. 493-496, 2017, doi: 10.1109/LAWP.2016.25856 50. Search in Google Scholar

[26] A. Basir and H. Yoo, “Efficient Wireless Power Transfer System with a Miniaturized Quad-Band Implantable Antenna for Deep-Body Multitasking Implants”, IEEE Trans. Microw. Theory Tech., vol. 68, no. 5, pp. 1943-1953, 2020, doi: 10.1109/TMTT.2020.296 5938. Search in Google Scholar

[27] P. Bose, A. Khaleghi, M. Albatat, J. Bergsland, and I. Balasingham, “RF Channel Modeling for Implant-to-Implant Communication and Implant to Subcutaneous Implant Communication for Future Leadless Cardiac Pacemakers”, IEEE Trans. Biomed. Eng., vol. 65, no. 12, pp. 2798-2807, 2018, doi: 10.1109/TBME. 2018.2817690. Search in Google Scholar

[28] H. Liu, J. Shi, S. Wu, X. Wang and J. Wang, “Dual-Band Monopole -Helix Antenna System for MHz-Band Implant Body Area Networks”, 2019 IEEE Int. Work. Electromagn. Appl. Student Innov. Compet. iWEM 2019 - Proc., pp. 1-2, 2019, doi: 10.1109/iWEM.2019.8887877.10.1109/iWEM.2019.8887877 Search in Google Scholar

[29] G. Sun, B. Muneer, Y. Li, and Q. Zhu, “Ultracompact Implantable Design with Integrated Wireless Power Transfer and RF Transmission Capabilities”, IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 2, pp. 281-291, 2018, doi: 10.1109/TB- CAS.2017.27876 49. Search in Google Scholar

[30] W. Xia, K. Saito, M. Takahashi, and K. Ito, “Performances of an implanted cavity slot antenna embedded in the human arm”, IEEE Trans. Antennas Propag., vol. 57, no. 4 Part 1, pp. 894-899, 2009, doi: 10.1109/TAP.2009.2014579.10.1109/TAP.2009.2014579 Search in Google Scholar

eISSN:
1339-309X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other