Open Access

Machine learning to predict extubation success using the spontaneous breathing trial, objective cough measurement, and diaphragmatic contraction velocity: Secondary analysis of the COBRE-US trial

, , , ,  and   
Jan 31, 2025

Cite
Download Cover

Machine Learning Methods for Predicting Success in Spontaneous Breathing Trial

Model Study Variable Accuracy Sensitivity Specificity PPV NVP
k-means SBT* training 64,0 72,6 31,5 79,9 23,5
SBT * test 63,0 72,0 35,7 72,7 38,5

Hierarchical Clustering SBT * training 52,7 53,3 50,7 80,2 22,4
SBT * test 60,9 54,9 64,3 79,2 40,9

Decision Trees SBT * training 77,3 99,9 1,1 NI 1,0
SBT * test 69,6 99,9 1,0 NI 1,0

Support Vector Machines SBT * training 77,3 99,9 1,1 NI 1,0
SBT * test 69,6 99,9 1,1 NI 1,0

Neural Networks SBT * training 77,3 99,9 1,0 NI 1,0
SBT * test 69,6 99,9 1,0 NI 1,0

Qualification Description
0 No cough
1 Audible movement of air through the endotracheal tube, but no audible cough
2 Strong cough with movement of secretions into the endotracheal tube
3 Strong cough with movement of secretions out (expulsion) of the endotracheal tube

Etiology of Respiratory Failure and Reason for Admission to Intensive Care

Variables Values
Shock, n(%) 52 (14,9)
Hypercapnia (pH < 7,25, CO2 elevated), n(%) 23 (6,6)
Hypoxemia (PaO2 < 60, usual FiO2), n(%) 261 (75)
Neuromuscular, n(%) 2 (0,6)
Perioperative, n(%) 10 (2,9)

Reason for ICU Admission, n (%)
Medical 345 (94)
Surgical (post-surgical only) 22 (6)

General Characteristics of the Population_

Variables n (%) Values
Male n (%) 219 (59,7)
Age, median (Range) 61 (18 – 88)
Weight in kg, median (IQR) 70 (60 – 80)
Height in cm, mean (SD) 163,6 (10)
Body Mass Index (BMI) in kg/m2,
median (IQR) 25,3 (21,7 – 29,1)
Active smoking, n (%) 33 (9)
Alcoholism n (%) 22 (6)

Comorbidities, n (%)
Diabetes Mellitus 113 (30,8)
Hypertension 173 (47,1)
Asthma 8 (2,2)
Pulmonary Fibrosis 6 (1,6)
Chronic Kidney Disease 69 (18,8)
Chronic Liver Disease 17 (4,6)

Machine Learning Methods for Predicting Extubation Success

Model Study Variable Accuracy Sensitivity Specificity PPV NVP
k-means SBT* training 63,4 74,4 35,1 74,7 34,7
SBT * test 63,0 76,7 37,5 69,8 46,2

Hierarchical Clustering SBT * training 66,4 91,6 8,0 69,7 31,4
SBT * test 65,2 90,0 18,8 67,5 50

Decision Trees SBT * training 89,8 98,3 70,4 94,6 68,7
SBT * test 95,7 99,9 87,5 99,9 68,7

Support Vector Machines SBT * training 85,9 99,0 56,0 95,9 55
SBT * test 93,5 99,9 81,3 99,9 81,3

Neural Networks SBT * training 85,9 99,0 56,0 95,9 55
SBT * test 93,5 99,9 81,3 99,9 81,3