Machine learning to predict extubation success using the spontaneous breathing trial, objective cough measurement, and diaphragmatic contraction velocity: Secondary analysis of the COBRE-US trial
, , , , and
Jan 31, 2025
About this article
Article Category: Research Article
Published Online: Jan 31, 2025
Page range: 70 - 77
Received: Oct 22, 2024
Accepted: Jan 26, 2025
DOI: https://doi.org/10.2478/jccm-2025-0009
Keywords
© 2025 Fabio Varón-Vega et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Machine Learning Methods for Predicting Success in Spontaneous Breathing Trial
k-means | SBT |
64,0 | 72,6 | 31,5 | 79,9 | 23,5 |
SBT |
63,0 | 72,0 | 35,7 | 72,7 | 38,5 | |
Hierarchical Clustering | SBT |
52,7 | 53,3 | 50,7 | 80,2 | 22,4 |
SBT |
60,9 | 54,9 | 64,3 | 79,2 | 40,9 | |
Decision Trees | SBT |
77,3 | 99,9 | 1,1 | NI | 1,0 |
SBT |
69,6 | 99,9 | 1,0 | NI | 1,0 | |
Support Vector Machines | SBT |
77,3 | 99,9 | 1,1 | NI | 1,0 |
SBT |
69,6 | 99,9 | 1,1 | NI | 1,0 | |
Neural Networks | SBT |
77,3 | 99,9 | 1,0 | NI | 1,0 |
SBT |
69,6 | 99,9 | 1,0 | NI | 1,0 |
Qualification | Description |
---|---|
0 | No cough |
1 | Audible movement of air through the endotracheal tube, but no audible cough |
2 | Strong cough with movement of secretions into the endotracheal tube |
3 | Strong cough with movement of secretions out (expulsion) of the endotracheal tube |
Etiology of Respiratory Failure and Reason for Admission to Intensive Care
Values | |
---|---|
Shock, n(%) | 52 (14,9) |
Hypercapnia (pH < 7,25, CO2 elevated), n(%) | 23 (6,6) |
Hypoxemia (PaO2 < 60, usual FiO2), n(%) | 261 (75) |
Neuromuscular, n(%) | 2 (0,6) |
Perioperative, n(%) | 10 (2,9) |
Reason for ICU Admission, n (%) | |
Medical | 345 (94) |
Surgical (post-surgical only) | 22 (6) |
General Characteristics of the Population_
Male n (%) | 219 (59,7) |
Age, median (Range) | 61 (18 – 88) |
Weight in kg, median (IQR) | 70 (60 – 80) |
Height in cm, mean (SD) | 163,6 (10) |
Body Mass Index (BMI) in kg/m2, | |
median (IQR) | 25,3 (21,7 – 29,1) |
Active smoking, n (%) | 33 (9) |
Alcoholism n (%) | 22 (6) |
Diabetes Mellitus | 113 (30,8) |
Hypertension | 173 (47,1) |
Asthma | 8 (2,2) |
Pulmonary Fibrosis | 6 (1,6) |
Chronic Kidney Disease | 69 (18,8) |
Chronic Liver Disease | 17 (4,6) |
Machine Learning Methods for Predicting Extubation Success
k-means | SBT |
63,4 | 74,4 | 35,1 | 74,7 | 34,7 |
SBT |
63,0 | 76,7 | 37,5 | 69,8 | 46,2 | |
Hierarchical Clustering | SBT |
66,4 | 91,6 | 8,0 | 69,7 | 31,4 |
SBT |
65,2 | 90,0 | 18,8 | 67,5 | 50 | |
Decision Trees | SBT |
89,8 | 98,3 | 70,4 | 94,6 | 68,7 |
SBT |
95,7 | 99,9 | 87,5 | 99,9 | 68,7 | |
Support Vector Machines | SBT |
85,9 | 99,0 | 56,0 | 95,9 | 55 |
SBT |
93,5 | 99,9 | 81,3 | 99,9 | 81,3 | |
Neural Networks | SBT |
85,9 | 99,0 | 56,0 | 95,9 | 55 |
SBT |
93,5 | 99,9 | 81,3 | 99,9 | 81,3 |