1. bookVolume 10 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
First Published
11 Mar 2014
Publication timeframe
3 times per year
Languages
English
access type Open Access

Prospects of Artificial Intelligence and Machine Learning Application in Banking Risk Management

Published Online: 06 Sep 2021
Page range: 41 - 57
Received: 04 Jul 2020
Accepted: 27 Nov 2020
Journal Details
License
Format
Journal
First Published
11 Mar 2014
Publication timeframe
3 times per year
Languages
English
Abstract

Artificial intelligence and machine learning have increasing influence on the financial sector, but also on economy as a whole. The impact of artificial intelligence and machine learning on banking risk management has become particularly interesting after the global financial crisis. The research focus is on artificial intelligence and machine learning potential for further banking risk management improvement. The paper seeks to explore the possibility for successful implementation yet taking into account challenges and problems which might occur as well as potential solutions. Artificial intelligence and machine learning have potential to support the mitigation measures for the contemporary global economic and financial challenges, including those caused by the COVID-19 crisis. The main focus in this paper is on credit risk management, but also on analysing artificial intelligence and machine learning application in other risk management areas. It is concluded that a measured and well-prepared further application of artificial intelligence, machine learning, deep learning and big data analytics can have further positive impact, especially on the following risk management areas: credit, market, liquidity, operational risk, and other related areas.

Keywords

JEL Classification

1. Addo, P.M., Guegan, D. and Hassani B. (2018). Credit Risk Analysis Using Machine and Deep Learning Models. Risks, 6: 38. https://doi.org/10.3390/risks6020038 Search in Google Scholar

2. Aldasoro, I., Gambacorta, L., Giudici P. and Leach T. (2020). Operational and cyber risks in the financial sector. Bank for International Settlements, BIS Working Papers No 840, February 2020 Search in Google Scholar

3. Adrian, T. (2018). Risk Management and Regulation. International Monetary Fund, Departmental Paper No. 18/13 Search in Google Scholar

4. Basel Committee on Banking Supervision (2000). Principles for the Management of Credit Risk, June 2006, Bank for International Settlements. Search in Google Scholar

5. Basel Committee on Banking Supervision (2006). International Convergence of Capital Measurement and Capital Standards – A revised Framework, June 2006, Bank for International Settlements. Search in Google Scholar

6. Basel Committee on Banking Supervision (2017). Basel III: Finalising post-crisis reforms, December 2017, Bank for International Settlements. Search in Google Scholar

7. Basel Committee on Banking Supervision (2019a). Basel III Monitoring Report, October 2019. Bank for International Settlements. Search in Google Scholar

8. Basel Committee on Banking Supervision (2019b). Seventeenth progress report on adoption of the Basel regulatory framework, October 2019. Bank for International Settlements. Search in Google Scholar

9. Basel Committee on Banking Supervision (2019c). The Basel Framework, Bank for International Settlements. Search in Google Scholar

10. Basel Committee on Banking Supervision (2020). “Governors and Heads of Supervision announce deferral of Basel III implementation to increase operational capacity of banks and supervisors to respond to Covid-19”, Press release, 27 March 2020, Retrieved from: https://www.bis.org/press/p200327.htm [Accessed 30 May 2020]. Search in Google Scholar

11. European Central Bank (2018). ECB Guide to the internal liquidity adequacy assessment process (ILAAP), November 2018 Search in Google Scholar

12. European Central Bank (2020). Supervisory Banking Statistics, Second quarter 2020, October 2020. Search in Google Scholar

13. Fabris, N., (2020). Financial stability and climate change, Journal of Central Banking Theory and Practice, Volume 9, No. 3: pp. 27-43, https://doi.org/10.2478/jcbtp-2020-0034 Search in Google Scholar

14. Financial Stability Board (2017). Artificial Intelligence and Machine Learning in Financial Services, Market Developments and Financial Stability Implications. November 2017, Retrieved from: http://www.fsb.org/2017/11/artificial-intelligence-and-machine-learning-in-financial-service/ [Accessed 29 May 2020]. Search in Google Scholar

15. Grubišić, Z., Kamenković, S. and Kaličanin, T. (2021). Comparative Analysis of the Banking Sector Competitiveness in Serbia and Montenegro, Journal of Central Banking Theory and Practice, Volume 10, No. 1: 75-91, https://doi.org/10.2478/jcbtp-2021-0004 Search in Google Scholar

16. Jacobs, M., (2018). The validation of machine-learning models for the stress testing of credit risk, Journal of Risk Management in Financial Institutions, Volume 11, number 3. Search in Google Scholar

17. Kolanovic, M. and Krishnamachari, R., (2017), “Big Data and AI Strategies: Machine Learning and Alternative Data Approach to Investing,” JP Morgan, May 2017, Retrieved from: https://faculty.sites.uci.edu/pjorion/files/2018/05/JPM-2017-MachineLearningInvestments.pdf [Accessed 18 October 2020]. Search in Google Scholar

18. Leo, M., Sharma, S. and Maddulety, K. (2019). Machine Learning in Banking Risk Management: A Literature Review, Risks 7: 29. https://doi.org/10.3390/risks7010029 Search in Google Scholar

19. Lessmann, S., Baesens, B., Seow, H. and Thomas, L.C., (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research, European Journal of Operational Research, 2015, vol. 247, issue 1, 124-136. https://doi.org/10.1016/j.ejor.2015.05.030 Search in Google Scholar

20. Milojević, N., (2014). Optimal banking and other financial business for the economic growth of Serbia, Journal of Central Banking Theory and Practice, Volume 3, No. 2: 61-83, https://doi.org/10.2478/jcbtp-2014-0011 Search in Google Scholar

21. Milojević, N., (2016). Contemporary Challenges in the Banking Risk Management, Business Economics, Year X, No. 2/2016, Vol. XIX: 66-85, https://doi.org/10.5937/poseko10-13418 Search in Google Scholar

22. Milojević, N. and Redzepagic, S. (2020a). Current Trends and Future Progress in the Banking Risk and Capital Management: Worldwide Experience and Republic of Serbia Case Study, Economic Analysis, 2020, Vol. 53, No. 2: 79-94, https://doi.org/10.28934/ea.20.53.2.pp79-94 Search in Google Scholar

23. Milojević, N. and Redzepagic, S. (2020b). Prospects of the Artificial Intelligence and Machine Learning Application in the Banking Risk Management, Paper presented at the International Scientific Conference: Global Economic Trends – Challenges and Opportunities, November 30, 2020, Belgrade Banking Academy – Faculty of Banking, Belgrade, Published book of abstracts. Search in Google Scholar

24. Panagiotis, A., Efthymios, K., Anastasios-Taxiarchis, K. and Athanasios, P. (2020). GARCH Modelling of High-capitalization Cryptocurrencies' Impacts During Bearish Markets, Journal of Central Banking Theory and Practice, Volume 9, No. 3: pp. 87-106, https://doi.org/10.2478/jcbtp-2020-0038 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo