1. bookVolume 12 (2022): Issue 3 (July 2022)
Journal Details
License
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Noise Robust Illumination Invariant Face Recognition Via Bivariate Wavelet Shrinkage in Logarithm Domain

Published Online: 23 Jul 2022
Volume & Issue: Volume 12 (2022) - Issue 3 (July 2022)
Page range: 169 - 180
Received: 10 Jan 2022
Accepted: 05 Jun 2022
Journal Details
License
Format
Journal
eISSN
2449-6499
First Published
30 Dec 2014
Publication timeframe
4 times per year
Languages
English

[1] X. He, S. Yan, Y. Hu, P. Niyogi and H. J. Zhang, Face recognition using Laplacianfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 328-340, 2005.10.1109/TPAMI.2005.5515747789 Search in Google Scholar

[2] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience, vol. 3, pp. 71-86, 1991.10.1162/jocn.1991.3.1.7123964806 Search in Google Scholar

[3] M. Turk and A, Pentland, Face recognition using eigenfaces, Proeedings of. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3-6 June, pp. 586–591, 1991. Search in Google Scholar

[4] L. H. Yang, T. D. Bui and C. Y. Suen, Image Recognition based on Nonlinear Wavelet Approximation, International Journal of Wavelets, Multiresolution and Information Processing, vol. 1, pp. 151-162, 2003.10.1142/S0219691303000104 Search in Google Scholar

[5] K. C. Lee, J. Ho and D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 684-698, 2005.10.1109/TPAMI.2005.9215875791 Search in Google Scholar

[6] S. Du and R. K. Ward, Adaptive region-based image enhancement method for robust face recognition under variable illumination conditions, IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, pp. 1165-1175, 2010. Search in Google Scholar

[7] J. Wright, A. Y. Yang, A. Ganesh, S. Sastry and Y. Ma, Robust face recognition via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, pp. 210-227, 2009.10.1109/TPAMI.2008.7919110489 Search in Google Scholar

[8] W. Chen, M. Er and S. Wu, Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain, IEEE Transactions. On System, Man, Cybernetics B, vol. 36, pp. 458–466, 2006.10.1109/TSMCB.2005.85735316602604 Search in Google Scholar

[9] J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay and R. Jaime-Rivas, Shift invariant support vector machines face recognition system, World Academy of Science, Engineering and Technology, vol. 16, pp. 947-951, 2008. Search in Google Scholar

[10] T. Ahonen, A. Hadid and M. Pietikainen, Face description with local binary patterns: Application to face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 2037–2041, 2006. Search in Google Scholar

[11] T. Chen, W. Yin, X. S. Zhou, D. Comaniciu and T. S. Huang, Total variation models for variable lighting face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1519–1524, 2006. Search in Google Scholar

[12] Z. R. Lai, D. Q. Dai, C. X. Ren and K. K. Huang, Multiscale logarithm difference edge maps for face recognition against varying lighting conditions, IEEE Transactions on Image Processing, vol. 24, pp. 1735-1747, 2015. Search in Google Scholar

[13] T. Zhang, Y. Y. Tang, B. Fang, Z. Shang and X. Liu, Face recognition under varying illumination using gradient faces, IEEE Transactions on Image Processing, vol. 18, pp. 2599–2606, 2009. Search in Google Scholar

[14] X. Xie, W. Zheng, J. Lai, P. C. Yuen and C. Y. Suen, (2011), Normalization of face illumination based on large and small-scale features, IEEE Transaction on Image Processing, vol. 20, pp. 1807-1821, 2011. Search in Google Scholar

[15] G. Y. Chen, An experimental study for the effects of noise on face recognition algorithms under varying illumination, Multimedia Tools and Applications, vol. 78, no. 18, pp. 26615-26631, 2019. Search in Google Scholar

[16] G. Y. Chen, T. D. Bui and A. Krzyzak, Illumination invariant face recognition using dual-tree complex wavelet transform in logarithm domain, Journal of Electrical Engineering, vol. 70, no. 2, pp.113-121, 2019.10.2478/jee-2019-0017 Search in Google Scholar

[17] G. Y. Chen, T. D. Bui and A. Krzyzak, Filter-based face recognition under varying illumination, IET Biometrics, vol.7, no.6, pp.628-635, 2018.10.1049/iet-bmt.2016.0195 Search in Google Scholar

[18] G. Y. Chen, C. J. Li and W. Sun, Hyperspectral face recognition via feature extraction and CRC-based classifier, IET Image Processing, vol. 11, no. 4, pp. 266-272, 2017.10.1049/iet-ipr.2016.0722 Search in Google Scholar

[19] G. Y. Chen, W. Sun and W. F. Xie, Hyperspectral face recognition using log-polar Fourier features and collaborative representation-based voting classifiers, IET Biometrics, vol. 6, no. 1, pp. 36-42, 2017.10.1049/iet-bmt.2015.0103 Search in Google Scholar

[20] S. Gupta, K. Thakur, M. Kumar, 2D-human face recognition using SIFT and SURF descriptors of face’s feature regions, The Visual Computer, vol. 37, no. 3, pp. 447-56, 2021.10.1007/s00371-020-01814-8 Search in Google Scholar

[21] M. Rouhsedaghat, Y. Wang, S. Hu, S. You and CC Kuo Low-resolution face recognition in resource-constrained environments, Pattern Recognition Letters, vol. 149, pp. 193-199. 2021.10.1016/j.patrec.2021.05.009 Search in Google Scholar

[22] Z. Zhang and M. Yao, Illumination invariant face recognition by expected patch log likelihood, 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1-4, 2020.10.1109/ISSPIT51521.2020.9408918 Search in Google Scholar

[23] Y. H. Huang and H. H. Chen, Deep face recognition for dim images, Pattern Recognition, vol. 126, 108580, 2022,10.1016/j.patcog.2022.108580 Search in Google Scholar

[24] H. Hussain, F. Alotaibi, E. H. Qazi and H. A. AboAlSamh, Illumination invariant face recognition using contourlet transform and convolutional neural network, journal of intelligent & Fuzzy Systems, to appear, 2022.10.3233/JIFS-212254 Search in Google Scholar

[25] B. K. P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1997. Search in Google Scholar

[26] N. G. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals, Journal of Applied and Computational Harmonic Analysis, vol. 10, pp. 234-253, 2001.10.1006/acha.2000.0343 Search in Google Scholar

[27] L. Sendur and I. Selesnick, Bivariate shrinkage functions for wavelet-based image denoising, IEEE Signal Processing Letters, vol. 9, no. 12, pp. 438-441, 2002.10.1109/LSP.2002.806054 Search in Google Scholar

[28] L. Zhang, M. Yang and X. Feng, Sparse representation or collaborative representation: which helps face recognition? IEEE International Conference on Computer Vision, pp. 471-478, 2011.10.1109/ICCV.2011.6126277 Search in Google Scholar

[29] T. Sim, S. Baker and M. Bsat, The CMU pose, illumination, and expression database, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 1615-1618, 2003. Search in Google Scholar

[30] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol. 81, no. 3, pp. 425-455, 1994.10.1093/biomet/81.3.425 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo