1. bookVolume 12 (2022): Edizione 3 (July 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-6499
Prima pubblicazione
30 Dec 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Noise Robust Illumination Invariant Face Recognition Via Bivariate Wavelet Shrinkage in Logarithm Domain

Pubblicato online: 23 Jul 2022
Volume & Edizione: Volume 12 (2022) - Edizione 3 (July 2022)
Pagine: 169 - 180
Ricevuto: 10 Jan 2022
Accettato: 05 Jun 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2449-6499
Prima pubblicazione
30 Dec 2014
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Recognizing faces under various lighting conditions is a challenging problem in artificial intelligence and applications. In this paper we describe a new face recognition algorithm which is invariant to illumination. We first convert image files to the logarithm domain and then we implement them using the dual-tree complex wavelet transform (DTCWT) which yields images approximately invariant to changes in illumination change. We classify the images by the collaborative representation-based classifier (CRC). We also perform the following sub-band transformations: (i) we set the approximation sub-band to zero if the noise standard deviation is greater than 5; (ii) we then threshold the two highest frequency wavelet sub-bands using bivariate wavelet shrinkage. (iii) otherwise, we set these two highest frequency wavelet sub-bands to zero. On obtained images we perform the inverse DTCWT which results in illumination invariant face images. The proposed method is strongly robust to Gaussian white noise. Experimental results show that our proposed algorithm outperforms several existing methods on the Extended Yale Face Database B and the CMU-PIE face database.

Keywords

[1] X. He, S. Yan, Y. Hu, P. Niyogi and H. J. Zhang, Face recognition using Laplacianfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 328-340, 2005.10.1109/TPAMI.2005.5515747789 Search in Google Scholar

[2] M. Turk and A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience, vol. 3, pp. 71-86, 1991.10.1162/jocn.1991.3.1.7123964806 Search in Google Scholar

[3] M. Turk and A, Pentland, Face recognition using eigenfaces, Proeedings of. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3-6 June, pp. 586–591, 1991. Search in Google Scholar

[4] L. H. Yang, T. D. Bui and C. Y. Suen, Image Recognition based on Nonlinear Wavelet Approximation, International Journal of Wavelets, Multiresolution and Information Processing, vol. 1, pp. 151-162, 2003.10.1142/S0219691303000104 Search in Google Scholar

[5] K. C. Lee, J. Ho and D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, pp. 684-698, 2005.10.1109/TPAMI.2005.9215875791 Search in Google Scholar

[6] S. Du and R. K. Ward, Adaptive region-based image enhancement method for robust face recognition under variable illumination conditions, IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, pp. 1165-1175, 2010. Search in Google Scholar

[7] J. Wright, A. Y. Yang, A. Ganesh, S. Sastry and Y. Ma, Robust face recognition via sparse representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, pp. 210-227, 2009.10.1109/TPAMI.2008.7919110489 Search in Google Scholar

[8] W. Chen, M. Er and S. Wu, Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain, IEEE Transactions. On System, Man, Cybernetics B, vol. 36, pp. 458–466, 2006.10.1109/TSMCB.2005.85735316602604 Search in Google Scholar

[9] J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay and R. Jaime-Rivas, Shift invariant support vector machines face recognition system, World Academy of Science, Engineering and Technology, vol. 16, pp. 947-951, 2008. Search in Google Scholar

[10] T. Ahonen, A. Hadid and M. Pietikainen, Face description with local binary patterns: Application to face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 2037–2041, 2006. Search in Google Scholar

[11] T. Chen, W. Yin, X. S. Zhou, D. Comaniciu and T. S. Huang, Total variation models for variable lighting face recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1519–1524, 2006. Search in Google Scholar

[12] Z. R. Lai, D. Q. Dai, C. X. Ren and K. K. Huang, Multiscale logarithm difference edge maps for face recognition against varying lighting conditions, IEEE Transactions on Image Processing, vol. 24, pp. 1735-1747, 2015. Search in Google Scholar

[13] T. Zhang, Y. Y. Tang, B. Fang, Z. Shang and X. Liu, Face recognition under varying illumination using gradient faces, IEEE Transactions on Image Processing, vol. 18, pp. 2599–2606, 2009. Search in Google Scholar

[14] X. Xie, W. Zheng, J. Lai, P. C. Yuen and C. Y. Suen, (2011), Normalization of face illumination based on large and small-scale features, IEEE Transaction on Image Processing, vol. 20, pp. 1807-1821, 2011. Search in Google Scholar

[15] G. Y. Chen, An experimental study for the effects of noise on face recognition algorithms under varying illumination, Multimedia Tools and Applications, vol. 78, no. 18, pp. 26615-26631, 2019. Search in Google Scholar

[16] G. Y. Chen, T. D. Bui and A. Krzyzak, Illumination invariant face recognition using dual-tree complex wavelet transform in logarithm domain, Journal of Electrical Engineering, vol. 70, no. 2, pp.113-121, 2019.10.2478/jee-2019-0017 Search in Google Scholar

[17] G. Y. Chen, T. D. Bui and A. Krzyzak, Filter-based face recognition under varying illumination, IET Biometrics, vol.7, no.6, pp.628-635, 2018.10.1049/iet-bmt.2016.0195 Search in Google Scholar

[18] G. Y. Chen, C. J. Li and W. Sun, Hyperspectral face recognition via feature extraction and CRC-based classifier, IET Image Processing, vol. 11, no. 4, pp. 266-272, 2017.10.1049/iet-ipr.2016.0722 Search in Google Scholar

[19] G. Y. Chen, W. Sun and W. F. Xie, Hyperspectral face recognition using log-polar Fourier features and collaborative representation-based voting classifiers, IET Biometrics, vol. 6, no. 1, pp. 36-42, 2017.10.1049/iet-bmt.2015.0103 Search in Google Scholar

[20] S. Gupta, K. Thakur, M. Kumar, 2D-human face recognition using SIFT and SURF descriptors of face’s feature regions, The Visual Computer, vol. 37, no. 3, pp. 447-56, 2021.10.1007/s00371-020-01814-8 Search in Google Scholar

[21] M. Rouhsedaghat, Y. Wang, S. Hu, S. You and CC Kuo Low-resolution face recognition in resource-constrained environments, Pattern Recognition Letters, vol. 149, pp. 193-199. 2021.10.1016/j.patrec.2021.05.009 Search in Google Scholar

[22] Z. Zhang and M. Yao, Illumination invariant face recognition by expected patch log likelihood, 2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), pp. 1-4, 2020.10.1109/ISSPIT51521.2020.9408918 Search in Google Scholar

[23] Y. H. Huang and H. H. Chen, Deep face recognition for dim images, Pattern Recognition, vol. 126, 108580, 2022,10.1016/j.patcog.2022.108580 Search in Google Scholar

[24] H. Hussain, F. Alotaibi, E. H. Qazi and H. A. AboAlSamh, Illumination invariant face recognition using contourlet transform and convolutional neural network, journal of intelligent & Fuzzy Systems, to appear, 2022.10.3233/JIFS-212254 Search in Google Scholar

[25] B. K. P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1997. Search in Google Scholar

[26] N. G. Kingsbury, Complex wavelets for shift invariant analysis and filtering of signals, Journal of Applied and Computational Harmonic Analysis, vol. 10, pp. 234-253, 2001.10.1006/acha.2000.0343 Search in Google Scholar

[27] L. Sendur and I. Selesnick, Bivariate shrinkage functions for wavelet-based image denoising, IEEE Signal Processing Letters, vol. 9, no. 12, pp. 438-441, 2002.10.1109/LSP.2002.806054 Search in Google Scholar

[28] L. Zhang, M. Yang and X. Feng, Sparse representation or collaborative representation: which helps face recognition? IEEE International Conference on Computer Vision, pp. 471-478, 2011.10.1109/ICCV.2011.6126277 Search in Google Scholar

[29] T. Sim, S. Baker and M. Bsat, The CMU pose, illumination, and expression database, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, pp. 1615-1618, 2003. Search in Google Scholar

[30] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol. 81, no. 3, pp. 425-455, 1994.10.1093/biomet/81.3.425 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo