Department of Computer and Information Science, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and ResearchChennai, India
Department of Computer and Information Science, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and ResearchChennai, India
Department of Computer and Information Science, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and ResearchChennai, India
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Holford NH, Kimko HC, Monteleone JP, Peck CC, “Simulation of clinical trials”, Annu Rev Pharmacol Toxicol, Vol. 40, No. 1, pp. 209–234, 2000. http://dx.doi.org/10.1146/annurev.pharmtox.40.1.209HolfordNHKimkoHCMonteleoneJPPeckCC“Simulation of clinical trials”Annu Rev Pharmacol Toxicol4012092342000http://dx.doi.org/10.1146/annurev.pharmtox.40.1.209Search in Google Scholar
Kuo I-Y, Hsieh C-H, Kuo W-T, Chang C-P, Wang Y-C, “Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment”, J Biomed Sci., Vol. 29, Article No. 56, 2022. http://dx.doi.org/10.1186/s12929-022-00837-8KuoI-YHsiehC-HKuoW-TChangC-PWangY-C“Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment”J Biomed Sci.29Article No. 56,2022http://dx.doi.org/10.1186/s12929-022-00837-8Search in Google Scholar
Neppelenbroek KH, Campanha NH, Spolidorio DMP, Spolidorio LC, Seó RS, Pavarina AC, “Molecular fingerprinting methods for the discrimination between C. albicans and C. dubliniensis”, Oral Dis., Vol. 12, No. 3, pp. 242–253, 2006. http://dx.doi.org/10.1111/j.1601-0825.2005.01189.xNeppelenbroekKHCampanhaNHSpolidorioDMPSpolidorioLCSeóRSPavarinaAC“Molecular fingerprinting methods for the discrimination between C. albicans and C. dubliniensis”Oral Dis.1232422532006http://dx.doi.org/10.1111/j.1601-0825.2005.01189.xSearch in Google Scholar
Miró O, Sánchez M, Espinosa G, Coll-Vinent B, Bragulat E, Millá J, “Analysis of patient flow in the emergency department and the effect of an extensive reorganisation”, Emerg Med J., Vol. 20, No. 2, pp. 143–148, 2003. http://dx.doi.org/10.1136/emj.20.2.143MiróOSánchezMEspinosaGColl-VinentBBragulatEMilláJ“Analysis of patient flow in the emergency department and the effect of an extensive reorganisation”Emerg Med J.2021431482003http://dx.doi.org/10.1136/emj.20.2.143Search in Google Scholar
Gamberi T, Chiappetta G, Fiaschi T, Modesti A, Sorbi F, Magherini F, “Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness”, Med Res Rev., Vol. 42, No. 3, pp. 1111–1146, 2022. http://dx.doi.org/10.1002/med.21872GamberiTChiappettaGFiaschiTModestiASorbiFMagheriniF“Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness”Med Res Rev.423111111462022http://dx.doi.org/10.1002/med.21872Search in Google Scholar
Luca AR, Ursuleanu TF, Gheorghe L, Grigorovici R, Iancu S, Hlusneac M, et al., “Impact of quality, type and volume of data used by deep learning models in the analysis of medical images”, Inform Med Unlocked, Vol. 29, Article No. 100911, 2022. http://dx.doi.org/10.1016/j.imu.2022.100911LucaARUrsuleanuTFGheorgheLGrigoroviciRIancuSHlusneacM“Impact of quality, type and volume of data used by deep learning models in the analysis of medical images”Inform Med Unlocked29Article No. 100911,2022http://dx.doi.org/10.1016/j.imu.2022.100911Search in Google Scholar
Nalini T, Revathi S, “An enhanced clustering algorithm implemented on biological data in data mining”, International Journal of Pharma and Bio Sciences, Vol. 4, No. 2, pp. 1281 – 1286, 2013.NaliniTRevathiS“An enhanced clustering algorithm implemented on biological data in data mining”International Journal of Pharma and Bio Sciences42128112862013Search in Google Scholar
Kaur I, Doja MN, Ahmad T, “Data mining and machine learning in cancer survival research: An overview and future recommendations”, J Biomed Inform, Vol. 128, Article No. 104026, 2022. http://dx.doi.org/10.1016/j.jbi.2022.104026KaurIDojaMNAhmadT“Data mining and machine learning in cancer survival research: An overview and future recommendations”J Biomed Inform128Article No. 104026,2022http://dx.doi.org/10.1016/j.jbi.2022.104026Search in Google Scholar
Napolitano G, Fox C, Middleton R, Connolly D, “Pattern-based information extraction from pathology reports for cancer registration”, Cancer Causes Control, Vol. 21, No. 11, pp. 1887–1894, 2010. http://dx.doi.org/10.1007/s10552-010-9616-4NapolitanoGFoxCMiddletonRConnollyD“Pattern-based information extraction from pathology reports for cancer registration”Cancer Causes Control2111188718942010http://dx.doi.org/10.1007/s10552-010-9616-4Search in Google Scholar
Peng C, Cheng J, Cheng Q, “A supervised learning model for high-dimensional and large-scale data”, ACM Transactions on Intelligent System Technology, Vol. 8, No. 2, pp. 1–23, 2017. http://dx.doi.org/10.1145/2972957PengCChengJChengQ“A supervised learning model for high-dimensional and large-scale data”ACM Transactions on Intelligent System Technology821232017http://dx.doi.org/10.1145/2972957Search in Google Scholar
Parikh RB, Manz CR, Nelson MN, Evans CN, Regli SH, Connor O, et al., “Clinician perspectives on machine learning prognostic algorithms in the routine care of patients with cancer: a qualitative study”, Supportive Care in Cancer, Vol. 30, pp. 4363–4372, 2022.ParikhRBManzCRNelsonMNEvansCNRegliSHConnorO“Clinician perspectives on machine learning prognostic algorithms in the routine care of patients with cancer: a qualitative study”Supportive Care in Cancer30436343722022Search in Google Scholar
Mak K-K, Pichika MR, “Artificial intelligence in drug development: present status and future prospects”, Drug Discovery Today, Vol. 24, No. 3, pp. 773–780, 2019. http://dx.doi.org/10.1016/j.drudis.2018.11.014MakK-KPichikaMR“Artificial intelligence in drug development: present status and future prospects”Drug Discovery Today2437737802019http://dx.doi.org/10.1016/j.drudis.2018.11.014Search in Google Scholar
Pun FW, Ozerov IV, Zhavoronkov A, “AI-powered therapeutic target discovery”, Trends Pharmacol Sci., Vol. 44, No. 9, pp. 561–572, 2023. http://dx.doi.org/10.1016/j.tips.2023.06.010PunFWOzerovIVZhavoronkovA“AI-powered therapeutic target discovery”Trends Pharmacol Sci.4495615722023http://dx.doi.org/10.1016/j.tips.2023.06.010Search in Google Scholar
Stenzinger A, Alber M, Allgäuer M, Jurmeister P, Bockmayr M, Budczies J, et al., “Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling”, Semin Cancer Biology, Vol. 84, pp. 129–143, 2022. http://dx.doi.org/10.1016/j.semcancer.2021.02.011StenzingerAAlberMAllgäuerMJurmeisterPBockmayrMBudcziesJ“Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling”Semin Cancer Biology841291432022http://dx.doi.org/10.1016/j.semcancer.2021.02.011Search in Google Scholar
Lee WW, Alkureishi ML, “The impact of EMRs on communication within the doctor-patient relationship”, In: Papadakos, P., Bertman, S. (eds) Distracted Doctoring. Springer, Cham., pp. 101–120, 2017. https://doi.org/10.1007/978-3-319-48707-6_9.LeeWWAlkureishiML“The impact of EMRs on communication within the doctor-patient relationship”In:PapadakosP.BertmanS.(eds)Distracted DoctoringSpringerCham.1011202017https://doi.org/10.1007/978-3-319-48707-6_9.Search in Google Scholar
Khorram-Manesh A, Dulebenets MA, Goniewicz K, “Implementing public health strategies-the need for educational initiatives: A systematic review”, Int J Environ Res Public Health, Vol. 18, No. 11, Article No. 5888, 2021. http://dx.doi.org/10.3390/ijerph18115888Khorram-ManeshADulebenetsMAGoniewiczK“Implementing public health strategies-the need for educational initiatives: A systematic review”Int J Environ Res Public Health1811Article No. 5888,2021http://dx.doi.org/10.3390/ijerph18115888Search in Google Scholar
Drake CG, “Combination immunotherapy approaches”, Ann Oncol., Vol. 23, Suppl. 8, pp. 41–46, 2012. http://dx.doi.org/10.1093/annonc/mds262DrakeCG“Combination immunotherapy approaches”Ann Oncol.23Suppl. 841462012http://dx.doi.org/10.1093/annonc/mds262Search in Google Scholar
Watanabe N, Woo SL-Y, Papageorgiou C, Celechovsky C, Takai S, “Fate of donor bone marrow cells in medial collateral ligament after simulated autologous transplantation”, Microsc Res Tech, Vol. 58, No. 1, pp. 39–44, 2002. http://dx.doi.org/10.1002/jemt.10115WatanabeNWooSL-YPapageorgiouCCelechovskyCTakaiS“Fate of donor bone marrow cells in medial collateral ligament after simulated autologous transplantation”Microsc Res Tech58139442002http://dx.doi.org/10.1002/jemt.10115Search in Google Scholar
Aldwin CM, Spiro A, Levenson MR, Cupertino AP, “Longitudinal findings from the Normative Aging Study: III. Personality, individual health trajectories, and mortality”, Psychol Aging, Vol. 16, No. 3, pp. 450–465, 2001. http://dx.doi.org/10.1037//0882-7974.16.3.450AldwinCMSpiroALevensonMRCupertinoAP“Longitudinal findings from the Normative Aging Study: III. Personality, individual health trajectories, and mortality”Psychol Aging1634504652001http://dx.doi.org/10.1037//0882-7974.16.3.450Search in Google Scholar
Ktistakis IP, Goodman G, Britzolaki A, “Advances in Assistive Technologies: Selected Papers in Honour of. Bourbakis”, Vol. 3, pp. 11–31, 2021. https://doi.org/10.1007/978-3-030-87132-1KtistakisIPGoodmanGBritzolakiA“Advances in Assistive Technologies: Selected Papers in Honour of. Bourbakis”311312021https://doi.org/10.1007/978-3-030-87132-1Search in Google Scholar
Lee KY, Kim J, “Artificial intelligence technology trends and IBM Watson references in the medical field”, Korean Med Educ Rev, Vol. 18, No. 2, pp. 51–57, 2016. http://dx.doi.org/10.17496/kmer.2016.18.2.51LeeKYKimJ“Artificial intelligence technology trends and IBM Watson references in the medical field”Korean Med Educ Rev18251572016http://dx.doi.org/10.17496/kmer.2016.18.2.51Search in Google Scholar
Ratti E, Graves M., “Explainable machine learning practices: opening another black box for reliable medical AI”, AI and Ethics, Vol. 2, pp. 801–814, 2022. https://doi.org/10.1007/s43681-022-00141-zRattiEGravesM.“Explainable machine learning practices: opening another black box for reliable medical AI”AI and Ethics28018142022https://doi.org/10.1007/s43681-022-00141-zSearch in Google Scholar
Boyd LA, Earnhardt RC, Dunn JT, Frierson HF, Hanks JB, “Preoperative evaluation and predictive value of fine-needle aspiration and frozen section of thyroid nodules” J Am Coll Surg., Vol. 187, No. 5, pp. 494–502, 1998. http://dx.doi.org/10.1016/s1072-7515(98)00221-xBoydLAEarnhardtRCDunnJTFriersonHFHanksJB“Preoperative evaluation and predictive value of fine-needle aspiration and frozen section of thyroid nodules”J Am Coll Surg.18754945021998http://dx.doi.org/10.1016/s1072-7515(98)00221-xSearch in Google Scholar
Mahmood AA, Murgod R, Swarup Badapanda S, “Artificial Intelligence in Oncology: Present Potential, Prospective Prospects, and Ethical Reviews”, International Journal of Trends in OncoScience, pp. 37–45, 2024.MahmoodAAMurgodRSwarup BadapandaS“Artificial Intelligence in Oncology: Present Potential, Prospective Prospects, and Ethical Reviews”International Journal of Trends in OncoScience37452024Search in Google Scholar
Zhou H, Baloch ZW, Nayar R, Bizzarro T, Fadda G, Adhikari-Guragain D, et al., “Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): Implications for the risk of malignancy (ROM) in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC)”, Cancer Cytopathol., Vol. 126, No. 1, pp. 20–26, 2018. http://dx.doi.org/10.1002/cncy.21926ZhouHBalochZWNayarRBizzarroTFaddaGAdhikari-GuragainD“Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): Implications for the risk of malignancy (ROM) in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC)”Cancer Cytopathol.126120262018http://dx.doi.org/10.1002/cncy.21926Search in Google Scholar
Elliott Range DD, Dov D, Kovalsky SZ, Henao R, Carin L, Cohen J, “Application of a machine learning algorithm to predict malignancy in thyroid cytopathology: Machine learning and thyroid cytopathology”, Cancer Cytopathology, Vol. 128, No. 4, pp. 287–295, 2020. http://dx.doi.org/10.1002/cncy.22238Elliott RangeDDDovDKovalskySZHenaoRCarinLCohenJ“Application of a machine learning algorithm to predict malignancy in thyroid cytopathology: Machine learning and thyroid cytopathology”Cancer Cytopathology12842872952020http://dx.doi.org/10.1002/cncy.22238Search in Google Scholar
Balentine CJ, Domingo RP, Patel R, Laucirica R, Suliburk JW, “Thyroid lobectomy for indeterminate FNA: not without consequences”, J Surg Res., Vol. 184, No. 1, pp. 189–192, 2013. http://dx.doi.org/10.1016/j.jss.2013.05.076BalentineCJDomingoRPPatelRLauciricaRSuliburkJW“Thyroid lobectomy for indeterminate FNA: not without consequences”J Surg Res.18411891922013http://dx.doi.org/10.1016/j.jss.2013.05.076Search in Google Scholar
Park Y, Heider D, Hauschild A-C, “Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence”, Cancers (Basel), Vol. 13, No. 13, Article No. 3148, 2021. http://dx.doi.org/10.3390/cancers13133148ParkYHeiderDHauschildA-C“Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence”Cancers (Basel)1313Article No. 3148,2021http://dx.doi.org/10.3390/cancers13133148Search in Google Scholar
Tripathi R, Sharma P, Chakraborty P, Varadwaj PK, “Next-generation sequencing revolution through big data analytics”, Front Life Sci., Vol. 9, No. 2, pp. 119–49, 2016. http://dx.doi.org/10.1080/21553769.2016.1178180TripathiRSharmaPChakrabortyPVaradwajPK“Next-generation sequencing revolution through big data analytics”Front Life Sci.92119492016http://dx.doi.org/10.1080/21553769.2016.1178180Search in Google Scholar
Biswas N, Chakrabarti S, “Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer”, Front Oncology, Vol. 10, Article No. 588221, 2020. http://dx.doi.org/10.3389/fonc.2020.588221BiswasNChakrabartiS“Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer”Front Oncology10Article No. 588221,2020http://dx.doi.org/10.3389/fonc.2020.588221Search in Google Scholar
Perelmuter VM, Tashireva LA, Manskikh VN, Denisov EV, Savelieva OE, Kaygorodova EV, et al., “Heterogeneity and plasticity of immune inflammatory responses in the tumor microenvironment: Their role in the antitumor effect and tumor aggressiveness”, Biology Bull Rev., Vol. 8, No. 5, pp. 431–448, 2018. http://dx.doi.org/10.1134/s2079086418050055PerelmuterVMTashirevaLAManskikhVNDenisovEVSavelievaOEKaygorodovaEV“Heterogeneity and plasticity of immune inflammatory responses in the tumor microenvironment: Their role in the antitumor effect and tumor aggressiveness”Biology Bull Rev.854314482018http://dx.doi.org/10.1134/s2079086418050055Search in Google Scholar
Rodellar J, Alférez S, Acevedo A, Molina A, Merino A, “Image processing and machine learning in the morphological analysis of blood cells”, Int J. Lab Hematology, Vol. 40, Suppl. 1, pp. 46–53, 2018. http://dx.doi.org/10.1111/ijlh.12818RodellarJAlférezSAcevedoAMolinaAMerinoA“Image processing and machine learning in the morphological analysis of blood cells”Int J. Lab Hematology40Suppl. 146532018http://dx.doi.org/10.1111/ijlh.12818Search in Google Scholar
Kini SR, Miller JM, Hamburger JI, Smith-Purslow MJ, “Cytopathology of follicular lesions of the thyroid gland”, Diagn Cytopathology, Vol. 1, No. 2, pp. 123–132, 1985. http://dx.doi.org/10.1002/dc.2840010208KiniSRMillerJMHamburgerJISmith-PurslowMJ“Cytopathology of follicular lesions of the thyroid gland”Diagn Cytopathology121231321985http://dx.doi.org/10.1002/dc.2840010208Search in Google Scholar
Saini A, Breen I, Pershad Y, Naidu S, Knuttinen MG, Alzubaidi S, et al., “Radiogenomics and radiomics in liver cancers”, Diagnostics (Basel), Vol. 9, No. 1, pp. 1–23, 2018. http://dx.doi.org/10.3390/diagnostics9010004SainiABreenIPershadYNaiduSKnuttinenMGAlzubaidiS“Radiogenomics and radiomics in liver cancers”Diagnostics (Basel)911232018http://dx.doi.org/10.3390/diagnostics9010004Search in Google Scholar
Jussupow E, Spohrer K, Heinzl A, Gawlitza J, “Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence”, Inf Syst Res., Vol. 32, No. 3, pp. 713–735, 2021. http://dx.doi.org/10.1287/isre.2020.0980JussupowESpohrerKHeinzlAGawlitzaJ“Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence”Inf Syst Res.3237137352021http://dx.doi.org/10.1287/isre.2020.0980Search in Google Scholar
Liang M, Ting Y, Fu H, “Estimating individualized optimal combination therapies through outcome weighted deep learning algorithms”, Statistics in Medicine, Vol. 37, No. 27, pp. 3869–3886, 2018. http://arxiv.org/abs/1804.05378LiangMTingYFuH“Estimating individualized optimal combination therapies through outcome weighted deep learning algorithms”Statistics in Medicine3727386938862018http://arxiv.org/abs/1804.05378Search in Google Scholar
Kumari M, Benzeval M, “Collecting biomarker data in longitudinal surveys”, Advances in Longitudinal Survey Methodology, pp. 26–46, 2021.KumariMBenzevalM“Collecting biomarker data in longitudinal surveys”Advances in Longitudinal Survey Methodology26462021Search in Google Scholar
Mahmood AA, Jha AM, Manivannan K, “Precision Medicine: Personalizing The Fight Against Cancer”, International Journal of Trends in OncoScience., pp. 10–18, 2024. DOI: https://doi.org/10.22376/ijtos.2023.2.1.10-18MahmoodAAJhaAMManivannanK“Precision Medicine: Personalizing The Fight Against Cancer”International Journal of Trends in OncoScience10182024DOI: https://doi.org/10.22376/ijtos.2023.2.1.10-18Search in Google Scholar
Dia AK, Ebrahimpour L, Yolchuyeva S, Tonneau M, Lamaze FC, Orain M, et al., “The Cross-Scale Association between Pathomics and Radiomics Features in Immunotherapy-Treated NSCLC Patients: A Preliminary Study”, Cancers, Vol. 16, No. 2, pp. 1–24, 2024. https://doi.org/10.3390/cancers16020348DiaAKEbrahimpourLYolchuyevaSTonneauMLamazeFCOrainM“The Cross-Scale Association between Pathomics and Radiomics Features in Immunotherapy-Treated NSCLC Patients: A Preliminary Study”Cancers1621242024https://doi.org/10.3390/cancers16020348Search in Google Scholar
Huang C, Clayton EA, Matyunina LV, McDonald LD, Benigno BB, Vannberg F, et al., “Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy”, Scientific Reports, Vol. 8, No. 1, Article No. 16444., 2018. http://dx.doi.org/10.1038/s41598-018-34753-5HuangCClaytonEAMatyuninaLVMcDonaldLDBenignoBBVannbergF“Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy”Scientific Reports81Article No. 16444.,2018http://dx.doi.org/10.1038/s41598-018-34753-5Search in Google Scholar
Hong R, Liu W, DeLair D, Razavian N, Fenyö D, “Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models”, Cell Rep Med., Vol. 2, No. 9, Article No. 100400, 2021. http://dx.doi.org/10.1016/j.xcrm.2021.100400HongRLiuWDeLairDRazavianNFenyöD“Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models”Cell Rep Med.29Article No. 100400,2021http://dx.doi.org/10.1016/j.xcrm.2021.100400Search in Google Scholar
Wolfgruber TK, Presting GG, “JunctionViewer: customizable annotation software for repeat-rich genomic regions”, BMC Bioinformatics, Vol. 11, No. 1, pp. 1–23, 2010. http://dx.doi.org/10.1186/1471-2105-11-23WolfgruberTKPrestingGG“JunctionViewer: customizable annotation software for repeat-rich genomic regions”BMC Bioinformatics1111232010http://dx.doi.org/10.1186/1471-2105-11-23Search in Google Scholar
Strug J, Strug B, “Machine learning approach in mutation testing”, In: Testing Software and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 200–214, 2012.StrugJStrugB“Machine learning approach in mutation testing”In:Testing Software and SystemsBerlin, HeidelbergSpringer Berlin Heidelberg2002142012Search in Google Scholar
Zhang H, Ji J, Liu Z, Lu H, Qian C, Wei C, et al., “Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: a multicenter study”, BMC Med., Vol. 21, No. 1, Article No. 270, 2023. http://dx.doi.org/10.1186/s12916-023-02964-xZhangHJiJLiuZLuHQianCWeiC“Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: a multicenter study”BMC Med.211Article No. 270,2023http://dx.doi.org/10.1186/s12916-023-02964-xSearch in Google Scholar
Corrales-Rodriguez L, Soulières D, Weng X, Tehfe M, Florescu M, Blais N, “Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study”, Thromb Res., Vol. 133, No. 1, pp. 48–51, 2014. http://dx.doi.org/10.1016/j.thromres.2013.10.042Corrales-RodriguezLSoulièresDWengXTehfeMFlorescuMBlaisN“Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study”Thromb Res.133148512014http://dx.doi.org/10.1016/j.thromres.2013.10.042Search in Google Scholar
Schweitzer N, Vogel A, “Systemic therapy of cholangiocarcinoma: From chemotherapy to targeted therapies”, Best Pract Res Clin Gastroenterol, Vol. 29, No. 2, pp. 345–353, 2015. http://dx.doi.org/10.1016/j.bpg.2015.01.002SchweitzerNVogelA“Systemic therapy of cholangiocarcinoma: From chemotherapy to targeted therapies”Best Pract Res Clin Gastroenterol2923453532015http://dx.doi.org/10.1016/j.bpg.2015.01.002Search in Google Scholar
Yardley-Jones A, Anderson D, Parke DV, “The toxicity of benzene and its metabolism and molecular pathology in human risk assessment”, Br J Ind Med., Vol. 48, No. 7, pp. 437–444, 1991. http://dx.doi.org/10.1136/oem.48.7.437Yardley-JonesAAndersonDParkeDV“The toxicity of benzene and its metabolism and molecular pathology in human risk assessment”Br J Ind Med.4874374441991http://dx.doi.org/10.1136/oem.48.7.437Search in Google Scholar
Fredriksson NJ, Ny L, Nilsson JA, Larsson E, “Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types”, Nat Genet., Vol. 46, No. 12, pp. 1258–1263, 2014. http://dx.doi.org/10.1038/ng.3141FredrikssonNJNyLNilssonJALarssonE“Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types”Nat Genet.4612125812632014http://dx.doi.org/10.1038/ng.3141Search in Google Scholar
Gruver AM, Lu H, Zhao X, Fulford AD, Soper MD, Ballard D, et al., “Pathologist-trained machine learning classifiers developed to quantitate celiac disease features differentiate endoscopic biopsies according to modified Marsh score and dietary intervention response”, Diagn Pathology, Vol. 18, No. 1, Article No. 122, 2023. doi: 10.1186/s13000-023-01412-xGruverAMLuHZhaoXFulfordADSoperMDBallardD“Pathologist-trained machine learning classifiers developed to quantitate celiac disease features differentiate endoscopic biopsies according to modified Marsh score and dietary intervention response”Diagn Pathology181Article No. 122,202310.1186/s13000-023-01412-xOpen DOISearch in Google Scholar
Atkins D, Makridis CA, Alterovitz G, Ramoni R, Clancy C, “Developing and implementing predictive models in a learning healthcare system: Traditional and artificial intelligence approaches in the Veterans Health Administration”, Annu Rev Biomed Data Sci., Vol. 5, No. 1, pp. 393–413, 2022. http://dx.doi.org/10.1146/annurev-biodatasci-122220-110053AtkinsDMakridisCAAlterovitzGRamoniRClancyC“Developing and implementing predictive models in a learning healthcare system: Traditional and artificial intelligence approaches in the Veterans Health Administration”Annu Rev Biomed Data Sci.513934132022http://dx.doi.org/10.1146/annurev-biodatasci-122220-110053Search in Google Scholar
Zhang S, Han P, Wu C, “Calibration techniques encompassing survey sampling, missing data analysis and causal inference”, Int Stat Rev., Vol. 91, No. 2, pp. 165–92, 2023. http://dx.doi.org/10.1111/insr.12518ZhangSHanPWuC“Calibration techniques encompassing survey sampling, missing data analysis and causal inference”Int Stat Rev.912165922023http://dx.doi.org/10.1111/insr.12518Search in Google Scholar
Ali WM, Alhumaidi MS, “Artificial Intelligence for Cancer Diagnosis & Radiology”, International Journal of Trends in OncoScience, Vol. 13–18, 2023.AliWMAlhumaidiMS“Artificial Intelligence for Cancer Diagnosis & Radiology”International Journal of Trends in OncoScience13–182023Search in Google Scholar
Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T, “Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis”, Clinical Chemistry and Laboratory Medicine (CCLM), Vol. 60, pp. 1974–1983, 2022.PeiQLuoYChenYLiJXieDYeT“Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis”Clinical Chemistry and Laboratory Medicine (CCLM)60197419832022Search in Google Scholar
Ye W, Luo C, Liu F, Liu Z, Chen F, “CD96 correlates with immune infiltration and impacts patient prognosis: A pan-cancer analysis”, Front Oncol., Vol. 11, Article No. 634617, 2021. http://dx.doi.org/10.3389/fonc.2021.634617YeWLuoCLiuFLiuZChenF“CD96 correlates with immune infiltration and impacts patient prognosis: A pan-cancer analysis”Front Oncol.11Article No. 634617,2021http://dx.doi.org/10.3389/fonc.2021.634617Search in Google Scholar
Wulfkuhle JD, Paweletz CP, Steeg PS, Petricoin EF, Liotta L., “Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. InNew Trends in Cancer for the 21st Century”, In: Proceedings of the International Symposium on Cancer: New Trends in Cancer for the 21st Century. Valencia, Spain; US: Springer, pp. 59–68, 2002.WulfkuhleJDPaweletzCPSteegPSPetricoinEFLiottaL“Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. InNew Trends in Cancer for the 21st Century”In:Proceedings of the International Symposium on Cancer: New Trends in Cancer for the 21st CenturyValencia, Spain; USSpringer59682002Search in Google Scholar
Picard M, Scott-Boyer M-P, Bodein A, Périn O, Droit A, “Integration strategies of multi-omics data for machine learning analysis”, Comput Struct Biotechnol J., Vol. 19, pp. 3735–3746, 2021. http://dx.doi.org/10.1016/j.csbj.2021.06.030PicardMScott-BoyerM-PBodeinAPérinODroitA“Integration strategies of multi-omics data for machine learning analysis”Comput Struct Biotechnol J.19373537462021http://dx.doi.org/10.1016/j.csbj.2021.06.030Search in Google Scholar
Al-Tashi Q, Saad MB, Muneer A, Qureshi R, Mirjalili S, Sheshadri A, et al., “Machine learning models for the identification of prognostic and predictive cancer biomarkers: A systematic review”, Int J Mol Sci., Vol. 24, No. 9, Article No. 7781, pp. 1–42, 2023. http://dx.doi.org/10.3390/ijms24097781Al-TashiQSaadMBMuneerAQureshiRMirjaliliSSheshadriA“Machine learning models for the identification of prognostic and predictive cancer biomarkers: A systematic review”Int J Mol Sci.249Article No. 77811422023http://dx.doi.org/10.3390/ijms24097781Search in Google Scholar
Dewey FE, Pan S, Wheeler MT, Quake SR, Ashley EA, “DNA sequencing: clinical applications of new DNA sequencing technologies”, Circulation, Vol. 125, No. 7, pp. 931–944, 2012. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.972828DeweyFEPanSWheelerMTQuakeSRAshleyEA“DNA sequencing: clinical applications of new DNA sequencing technologies”Circulation12579319442012http://dx.doi.org/10.1161/CIRCULATIONAHA.110.972828Search in Google Scholar
Klein CA, Hölzel D, “Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics”, Cell Cycle., Vol. 5, No. 16, pp. 1788–1798, 2006. http://dx.doi.org/10.4161/cc.5.16.3097KleinCAHölzelD“Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics”Cell Cycle.516178817982006http://dx.doi.org/10.4161/cc.5.16.3097Search in Google Scholar
Kasula BY, “Harnessing Machine Learning for Personalized Patient Care”, Transactions on Latest Trends in Artificial Intelligence, Vol. 4, No. 4, pp. 1–9, 2023.KasulaBY“Harnessing Machine Learning for Personalized Patient Care”Transactions on Latest Trends in Artificial Intelligence44192023Search in Google Scholar
Thiyagarajan S, Chakravarthy T, Arivoli PV, “Diagnosing Breast Cancer with Machine Learning Algorithms”, International Journal of Pharmaceutical Research, Vol. 23, pp. 1–13, 2020.ThiyagarajanSChakravarthyTArivoliPV“Diagnosing Breast Cancer with Machine Learning Algorithms”International Journal of Pharmaceutical Research231132020Search in Google Scholar
Quinlan AR, “BEDTools: the Swiss-army tool for genome feature analysis”, Current protocols in bioinformatics, Vol. 47, pp. 11–22, 2014. https://doi.org/10.1002/0471250953.bi1112s47QuinlanAR“BEDTools: the Swiss-army tool for genome feature analysis”Current protocols in bioinformatics4711222014https://doi.org/10.1002/0471250953.bi1112s47Search in Google Scholar
Singh Y, Bhatia PK, Sangwan O, “A review of studies on machine learning techniques”, International Journal of Computer Science and Security, Vol. 1, No. 1, pp. 70–84, 2007. https://www.cscjournals.org/manuscript/Journals/IJCSS/Volume1/Issue1/IJCSS-7.pdfSinghYBhatiaPKSangwanO“A review of studies on machine learning techniques”International Journal of Computer Science and Security1170842007https://www.cscjournals.org/manuscript/Journals/IJCSS/Volume1/Issue1/IJCSS-7.pdfSearch in Google Scholar
Almomani F., “Prediction the performance of multistage moving bed biological process using artificial neural network (ANN)”, Sci Total Environ., Vol. 744, Article No. 140854, 2020. http://dx.doi.org/10.1016/j.scitotenv.2020.140854AlmomaniF.“Prediction the performance of multistage moving bed biological process using artificial neural network (ANN)”Sci Total Environ.744Article No. 140854,2020http://dx.doi.org/10.1016/j.scitotenv.2020.140854Search in Google Scholar
Mahmoud AS, Alkhenizan A, Shafiq M, Alsoghayer S, “The impact of the implementation of a clinical decision support system on the quality of healthcare services in a primary care setting”, J Family Med Prim Care, Vol. 9, No. 12, pp. 6078–6084, 2020. http://dx.doi.org/10.4103/jfmpc.jfmpc_1728_20MahmoudASAlkhenizanAShafiqMAlsoghayerS“The impact of the implementation of a clinical decision support system on the quality of healthcare services in a primary care setting”J Family Med Prim Care912607860842020http://dx.doi.org/10.4103/jfmpc.jfmpc_1728_20Search in Google Scholar
Anderson G, Horvath J, “The growing burden of chronic disease in America”, Public Health Rep., Vol. 119, No. 3, pp. 263–270, 2004. http://dx.doi.org/10.1016/j.phr.2004.04.005AndersonGHorvathJ“The growing burden of chronic disease in America”Public Health Rep.11932632702004http://dx.doi.org/10.1016/j.phr.2004.04.005Search in Google Scholar
Lenouvel E, Novak L, Biedermann A, Kressig RW, Klöppel S, “Preventive treatment options for fear of falling within the Swiss healthcare system: A position paper”, Z Gerontol Geriat., Vol. 55, pp. 597–602, 2022. https://doi.org/10.1007/s00391-021-01957-wLenouvelENovakLBiedermannAKressigRWKlöppelS“Preventive treatment options for fear of falling within the Swiss healthcare system: A position paper”Z Gerontol Geriat.555976022022https://doi.org/10.1007/s00391-021-01957-wSearch in Google Scholar
Sim I, Gorman P, Greenes RA, Haynes RB, Kaplan B, Lehmann H, et al., “Clinical decision support systems for the practice of evidence-based medicine”, J Am Med Inform Assoc., Vol. 8, No. 6, pp. 527–534, 2001. http://dx.doi.org/10.1136/jamia.2001.0080527SimIGormanPGreenesRAHaynesRBKaplanBLehmannH“Clinical decision support systems for the practice of evidence-based medicine”J Am Med Inform Assoc.865275342001http://dx.doi.org/10.1136/jamia.2001.0080527Search in Google Scholar
Almkvist O., “Neuropsychological features of early Alzheimer’s disease: preclinical and clinical stages”, Acta Neurol. Scand. Suppl., Vol. 165, pp. 63–71, 1996. http://dx.doi.org/10.1111/j.1600-0404.1996.tb05874.xAlmkvistO.“Neuropsychological features of early Alzheimer’s disease: preclinical and clinical stages”Acta Neurol. Scand. Suppl.16563711996http://dx.doi.org/10.1111/j.1600-0404.1996.tb05874.xSearch in Google Scholar
Roncaglioni A, Toropov AA, Toropova AP, Benfenati E., “In silico methods to predict drug toxicity”, Current Opinion Pharmacology, Vol. 13, No. 5, pp. 802–806, 2013. http://dx.doi.org/10.1016/j.coph.2013.06.001RoncaglioniAToropovAAToropovaAPBenfenatiE.“In silico methods to predict drug toxicity”Current Opinion Pharmacology1358028062013http://dx.doi.org/10.1016/j.coph.2013.06.001Search in Google Scholar
Judson R, Elloumi F, Setzer RW, Li Z, Shah I., “A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model”, BMC Bioinformatics, Vol. 9, No. 1, Article No. 241, 2008. http://dx.doi.org/10.1186/1471-2105-9-241JudsonRElloumiFSetzerRWLiZShahI.“A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model”BMC Bioinformatics91Article No. 241,2008http://dx.doi.org/10.1186/1471-2105-9-241Search in Google Scholar
Raies AB, Bajic VB., “In silico toxicology: computational methods for the prediction of chemical toxicity: Computational methods for the prediction of chemical toxicity”, Wiley Interdisciplinary Rev Comput. Mol Sci., Vol. 6, No. 2, pp. 147–172, 2016. http://dx.doi.org/10.1002/wcms.1240RaiesABBajicVB.“In silico toxicology: computational methods for the prediction of chemical toxicity: Computational methods for the prediction of chemical toxicity”Wiley Interdisciplinary Rev Comput. Mol Sci.621471722016http://dx.doi.org/10.1002/wcms.1240Search in Google Scholar
Paster I, Shacham M, Brauner N, “Investigation of the relationships between molecular structure, molecular descriptors, and physical properties”, Ind Eng Chem Res., Vol. 48, No. 21, pp. 9723–9734, 2009. http://dx.doi.org/10.1021/ie801318yPasterIShachamMBraunerN“Investigation of the relationships between molecular structure, molecular descriptors, and physical properties”Ind Eng Chem Res.4821972397342009http://dx.doi.org/10.1021/ie801318ySearch in Google Scholar
Tran TT, Wibowo S, Tayara A, Chong H, “Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives”, Journal of Chemical Information and Modeling, Vol. 63, No. 9, pp. 2628–2643, 2023.TranTTWibowoSTayaraAChongH“Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives”Journal of Chemical Information and Modeling639262826432023Search in Google Scholar
Huang B, von Lilienfeld OA. Ab initio, “Machine Learning in chemical compound space”, Chem. Rev., Vol. 121, No. 16, pp. 10001–10036, 2021. http://dx.doi.org/10.1021/acs.chemrev.0c01303HuangBvon LilienfeldOA.Ab initio, “Machine Learning in chemical compound space”Chem. Rev.1211610001100362021http://dx.doi.org/10.1021/acs.chemrev.0c01303Search in Google Scholar
Hildebrandt MAT, Komaki R, Liao Z, Gu J, Chang JY, Ye Y, et al., “Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer”, PLoS One, Vol. 5, No. 8, Article No. e12402, 2010. http://dx.doi.org/10.1371/journal.pone.0012402HildebrandtMATKomakiRLiaoZGuJChangJYYeY“Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer”PLoS One58Article No. e12402,2010http://dx.doi.org/10.1371/journal.pone.0012402Search in Google Scholar
Yuan Y, Failmezger H, Rueda OM, Ali HR, Gräf S, Chin S-F, et al, “Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling”, Sci Transl. Med., Vol. 4, Article No. 157, 2012. http://dx.doi.org/10.1126/scitranslmed.3004330YuanYFailmezgerHRuedaOMAliHRGräfSChinS-F“Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling”Sci Transl. Med.4Article No. 157,2012http://dx.doi.org/10.1126/scitranslmed.3004330Search in Google Scholar
Banning M, “A review of clinical decision making: models and current research”, J Clin Nurs, Vol. 17, No. 2, pp. 187–95, 2008. http://dx.doi.org/10.1111/j.1365-2702.2006.01791.xBanningM“A review of clinical decision making: models and current research”J Clin Nurs172187952008http://dx.doi.org/10.1111/j.1365-2702.2006.01791.xSearch in Google Scholar
Giraud P, Giraud P, Gasnier A, El Ayachy R, Kreps S, Foy J-P, et al., “Radiomics and machine learning for radiotherapy in head and neck cancers”, Front Oncol., Vol. 9, No. 174, 2019. http://dx.doi.org/10.3389/fonc.2019.00174GiraudPGiraudPGasnierAEl AyachyRKrepsSFoyJ-P“Radiomics and machine learning for radiotherapy in head and neck cancers”Front Oncol.91742019http://dx.doi.org/10.3389/fonc.2019.00174Search in Google Scholar
Palma G, Monti S, Conson M, Pacelli R, Cella L, “Normal tissue complication probability (NTCP) models for modern radiation therapy”, Semin Oncol., Vol. 46, No. 3, pp. 210–218, 2019. http://dx.doi.org/10.1053/j.seminoncol.2019.07.006PalmaGMontiSConsonMPacelliRCellaL“Normal tissue complication probability (NTCP) models for modern radiation therapy”Semin Oncol.4632102182019http://dx.doi.org/10.1053/j.seminoncol.2019.07.006Search in Google Scholar
Toropov AA, Toropova AP, Raska I Jr, Leszczynska D, Leszczynski J, “Comprehension of drug toxicity: software and databases”, Comput. Biol. Med., Vol. 45, pp. 20–25, 2014. http://dx.doi.org/10.1016/j.compbiomed.2013.11.013ToropovAAToropovaAPRaskaIJrLeszczynskaDLeszczynskiJ“Comprehension of drug toxicity: software and databases”Comput. Biol. Med.4520252014http://dx.doi.org/10.1016/j.compbiomed.2013.11.013Search in Google Scholar
Watkins PB, Seligman PJ, Pears JS, Avigan MI, Senior JR, “Using controlled clinical trials to learn more about acute drug-induced liver injury”, Hepatology, Vol. 48, No. 5, pp. 1680–1689, 2008. http://dx.doi.org/10.1002/hep.22633WatkinsPBSeligmanPJPearsJSAviganMISeniorJR“Using controlled clinical trials to learn more about acute drug-induced liver injury”Hepatology485168016892008http://dx.doi.org/10.1002/hep.22633Search in Google Scholar
Smusz S, Kurczab R, Bojarski AJ, “A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds”, Chemometr Intell Lab Syst, Vol. 128, pp. 89–100, 2013. http://dx.doi.org/10.1016/j.chemolab.2013.08.003SmuszSKurczabRBojarskiAJ“A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds”Chemometr Intell Lab Syst128891002013http://dx.doi.org/10.1016/j.chemolab.2013.08.003Search in Google Scholar
Lu H, Ma X, Huang K, Azimi M., “Carbon trading volume and price forecasting in China using multiple machine learning models”, J Clean Prod., Vol. 249, Article No. 119386, 2020. http://dx.doi.org/10.1016/j.jclepro.2019.119386LuHMaXHuangKAzimiM.“Carbon trading volume and price forecasting in China using multiple machine learning models”J Clean Prod.249Article No. 119386,2020http://dx.doi.org/10.1016/j.jclepro.2019.119386Search in Google Scholar
Peng S, Wang W, Chen Y, Zhong X, Hu Q, “Regression-based hyperparameter learning for support vector machines”, IEEE Trans Neural Netw Learn Syst., Vol. 35, No. 12, pp. 18799–18813, 2024. http://dx.doi.org/10.1109/TNNLS.2023.3321685PengSWangWChenYZhongXHuQ“Regression-based hyperparameter learning for support vector machines”IEEE Trans Neural Netw Learn Syst.351218799188132024http://dx.doi.org/10.1109/TNNLS.2023.3321685Search in Google Scholar