Uneingeschränkter Zugang

Revolutionizing cancer care with machine learning: a comprehensive review

, , ,  und   
19. Juli 2025

Zitieren
COVER HERUNTERLADEN

Holford NH, Kimko HC, Monteleone JP, Peck CC, “Simulation of clinical trials”, Annu Rev Pharmacol Toxicol, Vol. 40, No. 1, pp. 209–234, 2000. http://dx.doi.org/10.1146/annurev.pharmtox.40.1.209 HolfordNH KimkoHC MonteleoneJP PeckCC “Simulation of clinical trials” Annu Rev Pharmacol Toxicol 40 1 209 234 2000 http://dx.doi.org/10.1146/annurev.pharmtox.40.1.209 Search in Google Scholar

Kuo I-Y, Hsieh C-H, Kuo W-T, Chang C-P, Wang Y-C, “Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment”, J Biomed Sci., Vol. 29, Article No. 56, 2022. http://dx.doi.org/10.1186/s12929-022-00837-8 KuoI-Y HsiehC-H KuoW-T ChangC-P WangY-C “Recent advances in conventional and unconventional vesicular secretion pathways in the tumor microenvironment” J Biomed Sci. 29 Article No. 56, 2022 http://dx.doi.org/10.1186/s12929-022-00837-8 Search in Google Scholar

Neppelenbroek KH, Campanha NH, Spolidorio DMP, Spolidorio LC, Seó RS, Pavarina AC, “Molecular fingerprinting methods for the discrimination between C. albicans and C. dubliniensis”, Oral Dis., Vol. 12, No. 3, pp. 242–253, 2006. http://dx.doi.org/10.1111/j.1601-0825.2005.01189.x NeppelenbroekKH CampanhaNH SpolidorioDMP SpolidorioLC SeóRS PavarinaAC “Molecular fingerprinting methods for the discrimination between C. albicans and C. dubliniensis” Oral Dis. 12 3 242 253 2006 http://dx.doi.org/10.1111/j.1601-0825.2005.01189.x Search in Google Scholar

Miró O, Sánchez M, Espinosa G, Coll-Vinent B, Bragulat E, Millá J, “Analysis of patient flow in the emergency department and the effect of an extensive reorganisation”, Emerg Med J., Vol. 20, No. 2, pp. 143–148, 2003. http://dx.doi.org/10.1136/emj.20.2.143 MiróO SánchezM EspinosaG Coll-VinentB BragulatE MilláJ “Analysis of patient flow in the emergency department and the effect of an extensive reorganisation” Emerg Med J. 20 2 143 148 2003 http://dx.doi.org/10.1136/emj.20.2.143 Search in Google Scholar

Gamberi T, Chiappetta G, Fiaschi T, Modesti A, Sorbi F, Magherini F, “Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness”, Med Res Rev., Vol. 42, No. 3, pp. 1111–1146, 2022. http://dx.doi.org/10.1002/med.21872 GamberiT ChiappettaG FiaschiT ModestiA SorbiF MagheriniF “Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness” Med Res Rev. 42 3 1111 1146 2022 http://dx.doi.org/10.1002/med.21872 Search in Google Scholar

Luca AR, Ursuleanu TF, Gheorghe L, Grigorovici R, Iancu S, Hlusneac M, et al., “Impact of quality, type and volume of data used by deep learning models in the analysis of medical images”, Inform Med Unlocked, Vol. 29, Article No. 100911, 2022. http://dx.doi.org/10.1016/j.imu.2022.100911 LucaAR UrsuleanuTF GheorgheL GrigoroviciR IancuS HlusneacM “Impact of quality, type and volume of data used by deep learning models in the analysis of medical images” Inform Med Unlocked 29 Article No. 100911, 2022 http://dx.doi.org/10.1016/j.imu.2022.100911 Search in Google Scholar

Nalini T, Revathi S, “An enhanced clustering algorithm implemented on biological data in data mining”, International Journal of Pharma and Bio Sciences, Vol. 4, No. 2, pp. 1281 – 1286, 2013. NaliniT RevathiS “An enhanced clustering algorithm implemented on biological data in data mining” International Journal of Pharma and Bio Sciences 4 2 1281 1286 2013 Search in Google Scholar

Kaur I, Doja MN, Ahmad T, “Data mining and machine learning in cancer survival research: An overview and future recommendations”, J Biomed Inform, Vol. 128, Article No. 104026, 2022. http://dx.doi.org/10.1016/j.jbi.2022.104026 KaurI DojaMN AhmadT “Data mining and machine learning in cancer survival research: An overview and future recommendations” J Biomed Inform 128 Article No. 104026, 2022 http://dx.doi.org/10.1016/j.jbi.2022.104026 Search in Google Scholar

Napolitano G, Fox C, Middleton R, Connolly D, “Pattern-based information extraction from pathology reports for cancer registration”, Cancer Causes Control, Vol. 21, No. 11, pp. 1887–1894, 2010. http://dx.doi.org/10.1007/s10552-010-9616-4 NapolitanoG FoxC MiddletonR ConnollyD “Pattern-based information extraction from pathology reports for cancer registration” Cancer Causes Control 21 11 1887 1894 2010 http://dx.doi.org/10.1007/s10552-010-9616-4 Search in Google Scholar

Peng C, Cheng J, Cheng Q, “A supervised learning model for high-dimensional and large-scale data”, ACM Transactions on Intelligent System Technology, Vol. 8, No. 2, pp. 1–23, 2017. http://dx.doi.org/10.1145/2972957 PengC ChengJ ChengQ “A supervised learning model for high-dimensional and large-scale data” ACM Transactions on Intelligent System Technology 8 2 1 23 2017 http://dx.doi.org/10.1145/2972957 Search in Google Scholar

Parikh RB, Manz CR, Nelson MN, Evans CN, Regli SH, Connor O, et al., “Clinician perspectives on machine learning prognostic algorithms in the routine care of patients with cancer: a qualitative study”, Supportive Care in Cancer, Vol. 30, pp. 4363–4372, 2022. ParikhRB ManzCR NelsonMN EvansCN RegliSH ConnorO “Clinician perspectives on machine learning prognostic algorithms in the routine care of patients with cancer: a qualitative study” Supportive Care in Cancer 30 4363 4372 2022 Search in Google Scholar

Mak K-K, Pichika MR, “Artificial intelligence in drug development: present status and future prospects”, Drug Discovery Today, Vol. 24, No. 3, pp. 773–780, 2019. http://dx.doi.org/10.1016/j.drudis.2018.11.014 MakK-K PichikaMR “Artificial intelligence in drug development: present status and future prospects” Drug Discovery Today 24 3 773 780 2019 http://dx.doi.org/10.1016/j.drudis.2018.11.014 Search in Google Scholar

Pun FW, Ozerov IV, Zhavoronkov A, “AI-powered therapeutic target discovery”, Trends Pharmacol Sci., Vol. 44, No. 9, pp. 561–572, 2023. http://dx.doi.org/10.1016/j.tips.2023.06.010 PunFW OzerovIV ZhavoronkovA “AI-powered therapeutic target discovery” Trends Pharmacol Sci. 44 9 561 572 2023 http://dx.doi.org/10.1016/j.tips.2023.06.010 Search in Google Scholar

Stenzinger A, Alber M, Allgäuer M, Jurmeister P, Bockmayr M, Budczies J, et al., “Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling”, Semin Cancer Biology, Vol. 84, pp. 129–143, 2022. http://dx.doi.org/10.1016/j.semcancer.2021.02.011 StenzingerA AlberM AllgäuerM JurmeisterP BockmayrM BudcziesJ “Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling” Semin Cancer Biology 84 129 143 2022 http://dx.doi.org/10.1016/j.semcancer.2021.02.011 Search in Google Scholar

Lee WW, Alkureishi ML, “The impact of EMRs on communication within the doctor-patient relationship”, In: Papadakos, P., Bertman, S. (eds) Distracted Doctoring. Springer, Cham., pp. 101–120, 2017. https://doi.org/10.1007/978-3-319-48707-6_9. LeeWW AlkureishiML “The impact of EMRs on communication within the doctor-patient relationship” In: PapadakosP. BertmanS. (eds) Distracted Doctoring Springer Cham. 101 120 2017 https://doi.org/10.1007/978-3-319-48707-6_9. Search in Google Scholar

Khorram-Manesh A, Dulebenets MA, Goniewicz K, “Implementing public health strategies-the need for educational initiatives: A systematic review”, Int J Environ Res Public Health, Vol. 18, No. 11, Article No. 5888, 2021. http://dx.doi.org/10.3390/ijerph18115888 Khorram-ManeshA DulebenetsMA GoniewiczK “Implementing public health strategies-the need for educational initiatives: A systematic review” Int J Environ Res Public Health 18 11 Article No. 5888, 2021 http://dx.doi.org/10.3390/ijerph18115888 Search in Google Scholar

Drake CG, “Combination immunotherapy approaches”, Ann Oncol., Vol. 23, Suppl. 8, pp. 41–46, 2012. http://dx.doi.org/10.1093/annonc/mds262 DrakeCG “Combination immunotherapy approaches” Ann Oncol. 23 Suppl. 8 41 46 2012 http://dx.doi.org/10.1093/annonc/mds262 Search in Google Scholar

Watanabe N, Woo SL-Y, Papageorgiou C, Celechovsky C, Takai S, “Fate of donor bone marrow cells in medial collateral ligament after simulated autologous transplantation”, Microsc Res Tech, Vol. 58, No. 1, pp. 39–44, 2002. http://dx.doi.org/10.1002/jemt.10115 WatanabeN WooSL-Y PapageorgiouC CelechovskyC TakaiS “Fate of donor bone marrow cells in medial collateral ligament after simulated autologous transplantation” Microsc Res Tech 58 1 39 44 2002 http://dx.doi.org/10.1002/jemt.10115 Search in Google Scholar

Aldwin CM, Spiro A, Levenson MR, Cupertino AP, “Longitudinal findings from the Normative Aging Study: III. Personality, individual health trajectories, and mortality”, Psychol Aging, Vol. 16, No. 3, pp. 450–465, 2001. http://dx.doi.org/10.1037//0882-7974.16.3.450 AldwinCM SpiroA LevensonMR CupertinoAP “Longitudinal findings from the Normative Aging Study: III. Personality, individual health trajectories, and mortality” Psychol Aging 16 3 450 465 2001 http://dx.doi.org/10.1037//0882-7974.16.3.450 Search in Google Scholar

Ktistakis IP, Goodman G, Britzolaki A, “Advances in Assistive Technologies: Selected Papers in Honour of. Bourbakis”, Vol. 3, pp. 11–31, 2021. https://doi.org/10.1007/978-3-030-87132-1 KtistakisIP GoodmanG BritzolakiA “Advances in Assistive Technologies: Selected Papers in Honour of. Bourbakis” 3 11 31 2021 https://doi.org/10.1007/978-3-030-87132-1 Search in Google Scholar

Lee KY, Kim J, “Artificial intelligence technology trends and IBM Watson references in the medical field”, Korean Med Educ Rev, Vol. 18, No. 2, pp. 51–57, 2016. http://dx.doi.org/10.17496/kmer.2016.18.2.51 LeeKY KimJ “Artificial intelligence technology trends and IBM Watson references in the medical field” Korean Med Educ Rev 18 2 51 57 2016 http://dx.doi.org/10.17496/kmer.2016.18.2.51 Search in Google Scholar

Ratti E, Graves M., “Explainable machine learning practices: opening another black box for reliable medical AI”, AI and Ethics, Vol. 2, pp. 801–814, 2022. https://doi.org/10.1007/s43681-022-00141-z RattiE GravesM. “Explainable machine learning practices: opening another black box for reliable medical AI” AI and Ethics 2 801 814 2022 https://doi.org/10.1007/s43681-022-00141-z Search in Google Scholar

Boyd LA, Earnhardt RC, Dunn JT, Frierson HF, Hanks JB, “Preoperative evaluation and predictive value of fine-needle aspiration and frozen section of thyroid nodules” J Am Coll Surg., Vol. 187, No. 5, pp. 494–502, 1998. http://dx.doi.org/10.1016/s1072-7515(98)00221-x BoydLA EarnhardtRC DunnJT FriersonHF HanksJB “Preoperative evaluation and predictive value of fine-needle aspiration and frozen section of thyroid nodules” J Am Coll Surg. 187 5 494 502 1998 http://dx.doi.org/10.1016/s1072-7515(98)00221-x Search in Google Scholar

Mahmood AA, Murgod R, Swarup Badapanda S, “Artificial Intelligence in Oncology: Present Potential, Prospective Prospects, and Ethical Reviews”, International Journal of Trends in OncoScience, pp. 37–45, 2024. MahmoodAA MurgodR Swarup BadapandaS “Artificial Intelligence in Oncology: Present Potential, Prospective Prospects, and Ethical Reviews” International Journal of Trends in OncoScience 37 45 2024 Search in Google Scholar

Zhou H, Baloch ZW, Nayar R, Bizzarro T, Fadda G, Adhikari-Guragain D, et al., “Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): Implications for the risk of malignancy (ROM) in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC)”, Cancer Cytopathol., Vol. 126, No. 1, pp. 20–26, 2018. http://dx.doi.org/10.1002/cncy.21926 ZhouH BalochZW NayarR BizzarroT FaddaG Adhikari-GuragainD “Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): Implications for the risk of malignancy (ROM) in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC)” Cancer Cytopathol. 126 1 20 26 2018 http://dx.doi.org/10.1002/cncy.21926 Search in Google Scholar

Elliott Range DD, Dov D, Kovalsky SZ, Henao R, Carin L, Cohen J, “Application of a machine learning algorithm to predict malignancy in thyroid cytopathology: Machine learning and thyroid cytopathology”, Cancer Cytopathology, Vol. 128, No. 4, pp. 287–295, 2020. http://dx.doi.org/10.1002/cncy.22238 Elliott RangeDD DovD KovalskySZ HenaoR CarinL CohenJ “Application of a machine learning algorithm to predict malignancy in thyroid cytopathology: Machine learning and thyroid cytopathology” Cancer Cytopathology 128 4 287 295 2020 http://dx.doi.org/10.1002/cncy.22238 Search in Google Scholar

Balentine CJ, Domingo RP, Patel R, Laucirica R, Suliburk JW, “Thyroid lobectomy for indeterminate FNA: not without consequences”, J Surg Res., Vol. 184, No. 1, pp. 189–192, 2013. http://dx.doi.org/10.1016/j.jss.2013.05.076 BalentineCJ DomingoRP PatelR LauciricaR SuliburkJW “Thyroid lobectomy for indeterminate FNA: not without consequences” J Surg Res. 184 1 189 192 2013 http://dx.doi.org/10.1016/j.jss.2013.05.076 Search in Google Scholar

Park Y, Heider D, Hauschild A-C, “Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence”, Cancers (Basel), Vol. 13, No. 13, Article No. 3148, 2021. http://dx.doi.org/10.3390/cancers13133148 ParkY HeiderD HauschildA-C “Integrative analysis of next-generation sequencing for next-generation cancer research toward artificial intelligence” Cancers (Basel) 13 13 Article No. 3148, 2021 http://dx.doi.org/10.3390/cancers13133148 Search in Google Scholar

Tripathi R, Sharma P, Chakraborty P, Varadwaj PK, “Next-generation sequencing revolution through big data analytics”, Front Life Sci., Vol. 9, No. 2, pp. 119–49, 2016. http://dx.doi.org/10.1080/21553769.2016.1178180 TripathiR SharmaP ChakrabortyP VaradwajPK “Next-generation sequencing revolution through big data analytics” Front Life Sci. 9 2 119 49 2016 http://dx.doi.org/10.1080/21553769.2016.1178180 Search in Google Scholar

Biswas N, Chakrabarti S, “Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer”, Front Oncology, Vol. 10, Article No. 588221, 2020. http://dx.doi.org/10.3389/fonc.2020.588221 BiswasN ChakrabartiS “Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer” Front Oncology 10 Article No. 588221, 2020 http://dx.doi.org/10.3389/fonc.2020.588221 Search in Google Scholar

Perelmuter VM, Tashireva LA, Manskikh VN, Denisov EV, Savelieva OE, Kaygorodova EV, et al., “Heterogeneity and plasticity of immune inflammatory responses in the tumor microenvironment: Their role in the antitumor effect and tumor aggressiveness”, Biology Bull Rev., Vol. 8, No. 5, pp. 431–448, 2018. http://dx.doi.org/10.1134/s2079086418050055 PerelmuterVM TashirevaLA ManskikhVN DenisovEV SavelievaOE KaygorodovaEV “Heterogeneity and plasticity of immune inflammatory responses in the tumor microenvironment: Their role in the antitumor effect and tumor aggressiveness” Biology Bull Rev. 8 5 431 448 2018 http://dx.doi.org/10.1134/s2079086418050055 Search in Google Scholar

Rodellar J, Alférez S, Acevedo A, Molina A, Merino A, “Image processing and machine learning in the morphological analysis of blood cells”, Int J. Lab Hematology, Vol. 40, Suppl. 1, pp. 46–53, 2018. http://dx.doi.org/10.1111/ijlh.12818 RodellarJ AlférezS AcevedoA MolinaA MerinoA “Image processing and machine learning in the morphological analysis of blood cells” Int J. Lab Hematology 40 Suppl. 1 46 53 2018 http://dx.doi.org/10.1111/ijlh.12818 Search in Google Scholar

Kini SR, Miller JM, Hamburger JI, Smith-Purslow MJ, “Cytopathology of follicular lesions of the thyroid gland”, Diagn Cytopathology, Vol. 1, No. 2, pp. 123–132, 1985. http://dx.doi.org/10.1002/dc.2840010208 KiniSR MillerJM HamburgerJI Smith-PurslowMJ “Cytopathology of follicular lesions of the thyroid gland” Diagn Cytopathology 1 2 123 132 1985 http://dx.doi.org/10.1002/dc.2840010208 Search in Google Scholar

Saini A, Breen I, Pershad Y, Naidu S, Knuttinen MG, Alzubaidi S, et al., “Radiogenomics and radiomics in liver cancers”, Diagnostics (Basel), Vol. 9, No. 1, pp. 1–23, 2018. http://dx.doi.org/10.3390/diagnostics9010004 SainiA BreenI PershadY NaiduS KnuttinenMG AlzubaidiS “Radiogenomics and radiomics in liver cancers” Diagnostics (Basel) 9 1 1 23 2018 http://dx.doi.org/10.3390/diagnostics9010004 Search in Google Scholar

Jussupow E, Spohrer K, Heinzl A, Gawlitza J, “Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence”, Inf Syst Res., Vol. 32, No. 3, pp. 713–735, 2021. http://dx.doi.org/10.1287/isre.2020.0980 JussupowE SpohrerK HeinzlA GawlitzaJ “Augmenting medical diagnosis decisions? An investigation into physicians’ decision-making process with artificial intelligence” Inf Syst Res. 32 3 713 735 2021 http://dx.doi.org/10.1287/isre.2020.0980 Search in Google Scholar

Liang M, Ting Y, Fu H, “Estimating individualized optimal combination therapies through outcome weighted deep learning algorithms”, Statistics in Medicine, Vol. 37, No. 27, pp. 3869–3886, 2018. http://arxiv.org/abs/1804.05378 LiangM TingY FuH “Estimating individualized optimal combination therapies through outcome weighted deep learning algorithms” Statistics in Medicine 37 27 3869 3886 2018 http://arxiv.org/abs/1804.05378 Search in Google Scholar

Kumari M, Benzeval M, “Collecting biomarker data in longitudinal surveys”, Advances in Longitudinal Survey Methodology, pp. 26–46, 2021. KumariM BenzevalM “Collecting biomarker data in longitudinal surveys” Advances in Longitudinal Survey Methodology 26 46 2021 Search in Google Scholar

Mahmood AA, Jha AM, Manivannan K, “Precision Medicine: Personalizing The Fight Against Cancer”, International Journal of Trends in OncoScience., pp. 10–18, 2024. DOI: https://doi.org/10.22376/ijtos.2023.2.1.10-18 MahmoodAA JhaAM ManivannanK “Precision Medicine: Personalizing The Fight Against Cancer” International Journal of Trends in OncoScience 10 18 2024 DOI: https://doi.org/10.22376/ijtos.2023.2.1.10-18 Search in Google Scholar

Dia AK, Ebrahimpour L, Yolchuyeva S, Tonneau M, Lamaze FC, Orain M, et al., “The Cross-Scale Association between Pathomics and Radiomics Features in Immunotherapy-Treated NSCLC Patients: A Preliminary Study”, Cancers, Vol. 16, No. 2, pp. 1–24, 2024. https://doi.org/10.3390/cancers16020348 DiaAK EbrahimpourL YolchuyevaS TonneauM LamazeFC OrainM “The Cross-Scale Association between Pathomics and Radiomics Features in Immunotherapy-Treated NSCLC Patients: A Preliminary Study” Cancers 16 2 1 24 2024 https://doi.org/10.3390/cancers16020348 Search in Google Scholar

Huang C, Clayton EA, Matyunina LV, McDonald LD, Benigno BB, Vannberg F, et al., “Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy”, Scientific Reports, Vol. 8, No. 1, Article No. 16444., 2018. http://dx.doi.org/10.1038/s41598-018-34753-5 HuangC ClaytonEA MatyuninaLV McDonaldLD BenignoBB VannbergF “Machine learning predicts individual cancer patient responses to therapeutic drugs with high accuracy” Scientific Reports 8 1 Article No. 16444., 2018 http://dx.doi.org/10.1038/s41598-018-34753-5 Search in Google Scholar

Hong R, Liu W, DeLair D, Razavian N, Fenyö D, “Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models”, Cell Rep Med., Vol. 2, No. 9, Article No. 100400, 2021. http://dx.doi.org/10.1016/j.xcrm.2021.100400 HongR LiuW DeLairD RazavianN FenyöD “Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models” Cell Rep Med. 2 9 Article No. 100400, 2021 http://dx.doi.org/10.1016/j.xcrm.2021.100400 Search in Google Scholar

Wolfgruber TK, Presting GG, “JunctionViewer: customizable annotation software for repeat-rich genomic regions”, BMC Bioinformatics, Vol. 11, No. 1, pp. 1–23, 2010. http://dx.doi.org/10.1186/1471-2105-11-23 WolfgruberTK PrestingGG “JunctionViewer: customizable annotation software for repeat-rich genomic regions” BMC Bioinformatics 11 1 1 23 2010 http://dx.doi.org/10.1186/1471-2105-11-23 Search in Google Scholar

Strug J, Strug B, “Machine learning approach in mutation testing”, In: Testing Software and Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 200–214, 2012. StrugJ StrugB “Machine learning approach in mutation testing” In: Testing Software and Systems Berlin, Heidelberg Springer Berlin Heidelberg 200 214 2012 Search in Google Scholar

Zhang H, Ji J, Liu Z, Lu H, Qian C, Wei C, et al., “Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: a multicenter study”, BMC Med., Vol. 21, No. 1, Article No. 270, 2023. http://dx.doi.org/10.1186/s12916-023-02964-x ZhangH JiJ LiuZ LuH QianC WeiC “Artificial intelligence for the diagnosis of clinically significant prostate cancer based on multimodal data: a multicenter study” BMC Med. 21 1 Article No. 270, 2023 http://dx.doi.org/10.1186/s12916-023-02964-x Search in Google Scholar

Corrales-Rodriguez L, Soulières D, Weng X, Tehfe M, Florescu M, Blais N, “Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study”, Thromb Res., Vol. 133, No. 1, pp. 48–51, 2014. http://dx.doi.org/10.1016/j.thromres.2013.10.042 Corrales-RodriguezL SoulièresD WengX TehfeM FlorescuM BlaisN “Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study” Thromb Res. 133 1 48 51 2014 http://dx.doi.org/10.1016/j.thromres.2013.10.042 Search in Google Scholar

Schweitzer N, Vogel A, “Systemic therapy of cholangiocarcinoma: From chemotherapy to targeted therapies”, Best Pract Res Clin Gastroenterol, Vol. 29, No. 2, pp. 345–353, 2015. http://dx.doi.org/10.1016/j.bpg.2015.01.002 SchweitzerN VogelA “Systemic therapy of cholangiocarcinoma: From chemotherapy to targeted therapies” Best Pract Res Clin Gastroenterol 29 2 345 353 2015 http://dx.doi.org/10.1016/j.bpg.2015.01.002 Search in Google Scholar

Yardley-Jones A, Anderson D, Parke DV, “The toxicity of benzene and its metabolism and molecular pathology in human risk assessment”, Br J Ind Med., Vol. 48, No. 7, pp. 437–444, 1991. http://dx.doi.org/10.1136/oem.48.7.437 Yardley-JonesA AndersonD ParkeDV “The toxicity of benzene and its metabolism and molecular pathology in human risk assessment” Br J Ind Med. 48 7 437 444 1991 http://dx.doi.org/10.1136/oem.48.7.437 Search in Google Scholar

Fredriksson NJ, Ny L, Nilsson JA, Larsson E, “Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types”, Nat Genet., Vol. 46, No. 12, pp. 1258–1263, 2014. http://dx.doi.org/10.1038/ng.3141 FredrikssonNJ NyL NilssonJA LarssonE “Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types” Nat Genet. 46 12 1258 1263 2014 http://dx.doi.org/10.1038/ng.3141 Search in Google Scholar

Gruver AM, Lu H, Zhao X, Fulford AD, Soper MD, Ballard D, et al., “Pathologist-trained machine learning classifiers developed to quantitate celiac disease features differentiate endoscopic biopsies according to modified Marsh score and dietary intervention response”, Diagn Pathology, Vol. 18, No. 1, Article No. 122, 2023. doi: 10.1186/s13000-023-01412-x GruverAM LuH ZhaoX FulfordAD SoperMD BallardD “Pathologist-trained machine learning classifiers developed to quantitate celiac disease features differentiate endoscopic biopsies according to modified Marsh score and dietary intervention response” Diagn Pathology 18 1 Article No. 122, 2023 10.1186/s13000-023-01412-x Open DOISearch in Google Scholar

Atkins D, Makridis CA, Alterovitz G, Ramoni R, Clancy C, “Developing and implementing predictive models in a learning healthcare system: Traditional and artificial intelligence approaches in the Veterans Health Administration”, Annu Rev Biomed Data Sci., Vol. 5, No. 1, pp. 393–413, 2022. http://dx.doi.org/10.1146/annurev-biodatasci-122220-110053 AtkinsD MakridisCA AlterovitzG RamoniR ClancyC “Developing and implementing predictive models in a learning healthcare system: Traditional and artificial intelligence approaches in the Veterans Health Administration” Annu Rev Biomed Data Sci. 5 1 393 413 2022 http://dx.doi.org/10.1146/annurev-biodatasci-122220-110053 Search in Google Scholar

Zhang S, Han P, Wu C, “Calibration techniques encompassing survey sampling, missing data analysis and causal inference”, Int Stat Rev., Vol. 91, No. 2, pp. 165–92, 2023. http://dx.doi.org/10.1111/insr.12518 ZhangS HanP WuC “Calibration techniques encompassing survey sampling, missing data analysis and causal inference” Int Stat Rev. 91 2 165 92 2023 http://dx.doi.org/10.1111/insr.12518 Search in Google Scholar

Ali WM, Alhumaidi MS, “Artificial Intelligence for Cancer Diagnosis & Radiology”, International Journal of Trends in OncoScience, Vol. 13–18, 2023. AliWM AlhumaidiMS “Artificial Intelligence for Cancer Diagnosis & Radiology” International Journal of Trends in OncoScience 13–18 2023 Search in Google Scholar

Pei Q, Luo Y, Chen Y, Li J, Xie D, Ye T, “Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis”, Clinical Chemistry and Laboratory Medicine (CCLM), Vol. 60, pp. 1974–1983, 2022. PeiQ LuoY ChenY LiJ XieD YeT “Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis” Clinical Chemistry and Laboratory Medicine (CCLM) 60 1974 1983 2022 Search in Google Scholar

Ye W, Luo C, Liu F, Liu Z, Chen F, “CD96 correlates with immune infiltration and impacts patient prognosis: A pan-cancer analysis”, Front Oncol., Vol. 11, Article No. 634617, 2021. http://dx.doi.org/10.3389/fonc.2021.634617 YeW LuoC LiuF LiuZ ChenF “CD96 correlates with immune infiltration and impacts patient prognosis: A pan-cancer analysis” Front Oncol. 11 Article No. 634617, 2021 http://dx.doi.org/10.3389/fonc.2021.634617 Search in Google Scholar

Wulfkuhle JD, Paweletz CP, Steeg PS, Petricoin EF, Liotta L., “Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. InNew Trends in Cancer for the 21st Century”, In: Proceedings of the International Symposium on Cancer: New Trends in Cancer for the 21st Century. Valencia, Spain; US: Springer, pp. 59–68, 2002. WulfkuhleJD PaweletzCP SteegPS PetricoinEF LiottaL “Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. InNew Trends in Cancer for the 21st Century” In: Proceedings of the International Symposium on Cancer: New Trends in Cancer for the 21st Century Valencia, Spain; US Springer 59 68 2002 Search in Google Scholar

Picard M, Scott-Boyer M-P, Bodein A, Périn O, Droit A, “Integration strategies of multi-omics data for machine learning analysis”, Comput Struct Biotechnol J., Vol. 19, pp. 3735–3746, 2021. http://dx.doi.org/10.1016/j.csbj.2021.06.030 PicardM Scott-BoyerM-P BodeinA PérinO DroitA “Integration strategies of multi-omics data for machine learning analysis” Comput Struct Biotechnol J. 19 3735 3746 2021 http://dx.doi.org/10.1016/j.csbj.2021.06.030 Search in Google Scholar

Al-Tashi Q, Saad MB, Muneer A, Qureshi R, Mirjalili S, Sheshadri A, et al., “Machine learning models for the identification of prognostic and predictive cancer biomarkers: A systematic review”, Int J Mol Sci., Vol. 24, No. 9, Article No. 7781, pp. 1–42, 2023. http://dx.doi.org/10.3390/ijms24097781 Al-TashiQ SaadMB MuneerA QureshiR MirjaliliS SheshadriA “Machine learning models for the identification of prognostic and predictive cancer biomarkers: A systematic review” Int J Mol Sci. 24 9 Article No. 7781 1 42 2023 http://dx.doi.org/10.3390/ijms24097781 Search in Google Scholar

Dewey FE, Pan S, Wheeler MT, Quake SR, Ashley EA, “DNA sequencing: clinical applications of new DNA sequencing technologies”, Circulation, Vol. 125, No. 7, pp. 931–944, 2012. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.972828 DeweyFE PanS WheelerMT QuakeSR AshleyEA “DNA sequencing: clinical applications of new DNA sequencing technologies” Circulation 125 7 931 944 2012 http://dx.doi.org/10.1161/CIRCULATIONAHA.110.972828 Search in Google Scholar

Klein CA, Hölzel D, “Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics”, Cell Cycle., Vol. 5, No. 16, pp. 1788–1798, 2006. http://dx.doi.org/10.4161/cc.5.16.3097 KleinCA HölzelD “Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics” Cell Cycle. 5 16 1788 1798 2006 http://dx.doi.org/10.4161/cc.5.16.3097 Search in Google Scholar

Kasula BY, “Harnessing Machine Learning for Personalized Patient Care”, Transactions on Latest Trends in Artificial Intelligence, Vol. 4, No. 4, pp. 1–9, 2023. KasulaBY “Harnessing Machine Learning for Personalized Patient Care” Transactions on Latest Trends in Artificial Intelligence 4 4 1 9 2023 Search in Google Scholar

Thiyagarajan S, Chakravarthy T, Arivoli PV, “Diagnosing Breast Cancer with Machine Learning Algorithms”, International Journal of Pharmaceutical Research, Vol. 23, pp. 1–13, 2020. ThiyagarajanS ChakravarthyT ArivoliPV “Diagnosing Breast Cancer with Machine Learning Algorithms” International Journal of Pharmaceutical Research 23 1 13 2020 Search in Google Scholar

Quinlan AR, “BEDTools: the Swiss-army tool for genome feature analysis”, Current protocols in bioinformatics, Vol. 47, pp. 11–22, 2014. https://doi.org/10.1002/0471250953.bi1112s47 QuinlanAR “BEDTools: the Swiss-army tool for genome feature analysis” Current protocols in bioinformatics 47 11 22 2014 https://doi.org/10.1002/0471250953.bi1112s47 Search in Google Scholar

Singh Y, Bhatia PK, Sangwan O, “A review of studies on machine learning techniques”, International Journal of Computer Science and Security, Vol. 1, No. 1, pp. 70–84, 2007. https://www.cscjournals.org/manuscript/Journals/IJCSS/Volume1/Issue1/IJCSS-7.pdf SinghY BhatiaPK SangwanO “A review of studies on machine learning techniques” International Journal of Computer Science and Security 1 1 70 84 2007 https://www.cscjournals.org/manuscript/Journals/IJCSS/Volume1/Issue1/IJCSS-7.pdf Search in Google Scholar

Almomani F., “Prediction the performance of multistage moving bed biological process using artificial neural network (ANN)”, Sci Total Environ., Vol. 744, Article No. 140854, 2020. http://dx.doi.org/10.1016/j.scitotenv.2020.140854 AlmomaniF. “Prediction the performance of multistage moving bed biological process using artificial neural network (ANN)” Sci Total Environ. 744 Article No. 140854, 2020 http://dx.doi.org/10.1016/j.scitotenv.2020.140854 Search in Google Scholar

Mahmoud AS, Alkhenizan A, Shafiq M, Alsoghayer S, “The impact of the implementation of a clinical decision support system on the quality of healthcare services in a primary care setting”, J Family Med Prim Care, Vol. 9, No. 12, pp. 6078–6084, 2020. http://dx.doi.org/10.4103/jfmpc.jfmpc_1728_20 MahmoudAS AlkhenizanA ShafiqM AlsoghayerS “The impact of the implementation of a clinical decision support system on the quality of healthcare services in a primary care setting” J Family Med Prim Care 9 12 6078 6084 2020 http://dx.doi.org/10.4103/jfmpc.jfmpc_1728_20 Search in Google Scholar

Anderson G, Horvath J, “The growing burden of chronic disease in America”, Public Health Rep., Vol. 119, No. 3, pp. 263–270, 2004. http://dx.doi.org/10.1016/j.phr.2004.04.005 AndersonG HorvathJ “The growing burden of chronic disease in America” Public Health Rep. 119 3 263 270 2004 http://dx.doi.org/10.1016/j.phr.2004.04.005 Search in Google Scholar

Lenouvel E, Novak L, Biedermann A, Kressig RW, Klöppel S, “Preventive treatment options for fear of falling within the Swiss healthcare system: A position paper”, Z Gerontol Geriat., Vol. 55, pp. 597–602, 2022. https://doi.org/10.1007/s00391-021-01957-w LenouvelE NovakL BiedermannA KressigRW KlöppelS “Preventive treatment options for fear of falling within the Swiss healthcare system: A position paper” Z Gerontol Geriat. 55 597 602 2022 https://doi.org/10.1007/s00391-021-01957-w Search in Google Scholar

Sim I, Gorman P, Greenes RA, Haynes RB, Kaplan B, Lehmann H, et al., “Clinical decision support systems for the practice of evidence-based medicine”, J Am Med Inform Assoc., Vol. 8, No. 6, pp. 527–534, 2001. http://dx.doi.org/10.1136/jamia.2001.0080527 SimI GormanP GreenesRA HaynesRB KaplanB LehmannH “Clinical decision support systems for the practice of evidence-based medicine” J Am Med Inform Assoc. 8 6 527 534 2001 http://dx.doi.org/10.1136/jamia.2001.0080527 Search in Google Scholar

Almkvist O., “Neuropsychological features of early Alzheimer’s disease: preclinical and clinical stages”, Acta Neurol. Scand. Suppl., Vol. 165, pp. 63–71, 1996. http://dx.doi.org/10.1111/j.1600-0404.1996.tb05874.x AlmkvistO. “Neuropsychological features of early Alzheimer’s disease: preclinical and clinical stages” Acta Neurol. Scand. Suppl. 165 63 71 1996 http://dx.doi.org/10.1111/j.1600-0404.1996.tb05874.x Search in Google Scholar

Roncaglioni A, Toropov AA, Toropova AP, Benfenati E., “In silico methods to predict drug toxicity”, Current Opinion Pharmacology, Vol. 13, No. 5, pp. 802–806, 2013. http://dx.doi.org/10.1016/j.coph.2013.06.001 RoncaglioniA ToropovAA ToropovaAP BenfenatiE. “In silico methods to predict drug toxicity” Current Opinion Pharmacology 13 5 802 806 2013 http://dx.doi.org/10.1016/j.coph.2013.06.001 Search in Google Scholar

Judson R, Elloumi F, Setzer RW, Li Z, Shah I., “A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model”, BMC Bioinformatics, Vol. 9, No. 1, Article No. 241, 2008. http://dx.doi.org/10.1186/1471-2105-9-241 JudsonR ElloumiF SetzerRW LiZ ShahI. “A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model” BMC Bioinformatics 9 1 Article No. 241, 2008 http://dx.doi.org/10.1186/1471-2105-9-241 Search in Google Scholar

Raies AB, Bajic VB., “In silico toxicology: computational methods for the prediction of chemical toxicity: Computational methods for the prediction of chemical toxicity”, Wiley Interdisciplinary Rev Comput. Mol Sci., Vol. 6, No. 2, pp. 147–172, 2016. http://dx.doi.org/10.1002/wcms.1240 RaiesAB BajicVB. “In silico toxicology: computational methods for the prediction of chemical toxicity: Computational methods for the prediction of chemical toxicity” Wiley Interdisciplinary Rev Comput. Mol Sci. 6 2 147 172 2016 http://dx.doi.org/10.1002/wcms.1240 Search in Google Scholar

Paster I, Shacham M, Brauner N, “Investigation of the relationships between molecular structure, molecular descriptors, and physical properties”, Ind Eng Chem Res., Vol. 48, No. 21, pp. 9723–9734, 2009. http://dx.doi.org/10.1021/ie801318y PasterI ShachamM BraunerN “Investigation of the relationships between molecular structure, molecular descriptors, and physical properties” Ind Eng Chem Res. 48 21 9723 9734 2009 http://dx.doi.org/10.1021/ie801318y Search in Google Scholar

Tran TT, Wibowo S, Tayara A, Chong H, “Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives”, Journal of Chemical Information and Modeling, Vol. 63, No. 9, pp. 2628–2643, 2023. TranTT WibowoS TayaraA ChongH “Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives” Journal of Chemical Information and Modeling 63 9 2628 2643 2023 Search in Google Scholar

Huang B, von Lilienfeld OA. Ab initio, “Machine Learning in chemical compound space”, Chem. Rev., Vol. 121, No. 16, pp. 10001–10036, 2021. http://dx.doi.org/10.1021/acs.chemrev.0c01303 HuangB von LilienfeldOA. Ab initio, “Machine Learning in chemical compound space” Chem. Rev. 121 16 10001 10036 2021 http://dx.doi.org/10.1021/acs.chemrev.0c01303 Search in Google Scholar

Hildebrandt MAT, Komaki R, Liao Z, Gu J, Chang JY, Ye Y, et al., “Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer”, PLoS One, Vol. 5, No. 8, Article No. e12402, 2010. http://dx.doi.org/10.1371/journal.pone.0012402 HildebrandtMAT KomakiR LiaoZ GuJ ChangJY YeY “Genetic variants in inflammation-related genes are associated with radiation-induced toxicity following treatment for non-small cell lung cancer” PLoS One 5 8 Article No. e12402, 2010 http://dx.doi.org/10.1371/journal.pone.0012402 Search in Google Scholar

Yuan Y, Failmezger H, Rueda OM, Ali HR, Gräf S, Chin S-F, et al, “Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling”, Sci Transl. Med., Vol. 4, Article No. 157, 2012. http://dx.doi.org/10.1126/scitranslmed.3004330 YuanY FailmezgerH RuedaOM AliHR GräfS ChinS-F “Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling” Sci Transl. Med. 4 Article No. 157, 2012 http://dx.doi.org/10.1126/scitranslmed.3004330 Search in Google Scholar

Banning M, “A review of clinical decision making: models and current research”, J Clin Nurs, Vol. 17, No. 2, pp. 187–95, 2008. http://dx.doi.org/10.1111/j.1365-2702.2006.01791.x BanningM “A review of clinical decision making: models and current research” J Clin Nurs 17 2 187 95 2008 http://dx.doi.org/10.1111/j.1365-2702.2006.01791.x Search in Google Scholar

Giraud P, Giraud P, Gasnier A, El Ayachy R, Kreps S, Foy J-P, et al., “Radiomics and machine learning for radiotherapy in head and neck cancers”, Front Oncol., Vol. 9, No. 174, 2019. http://dx.doi.org/10.3389/fonc.2019.00174 GiraudP GiraudP GasnierA El AyachyR KrepsS FoyJ-P “Radiomics and machine learning for radiotherapy in head and neck cancers” Front Oncol. 9 174 2019 http://dx.doi.org/10.3389/fonc.2019.00174 Search in Google Scholar

Palma G, Monti S, Conson M, Pacelli R, Cella L, “Normal tissue complication probability (NTCP) models for modern radiation therapy”, Semin Oncol., Vol. 46, No. 3, pp. 210–218, 2019. http://dx.doi.org/10.1053/j.seminoncol.2019.07.006 PalmaG MontiS ConsonM PacelliR CellaL “Normal tissue complication probability (NTCP) models for modern radiation therapy” Semin Oncol. 46 3 210 218 2019 http://dx.doi.org/10.1053/j.seminoncol.2019.07.006 Search in Google Scholar

Toropov AA, Toropova AP, Raska I Jr, Leszczynska D, Leszczynski J, “Comprehension of drug toxicity: software and databases”, Comput. Biol. Med., Vol. 45, pp. 20–25, 2014. http://dx.doi.org/10.1016/j.compbiomed.2013.11.013 ToropovAA ToropovaAP RaskaIJr LeszczynskaD LeszczynskiJ “Comprehension of drug toxicity: software and databases” Comput. Biol. Med. 45 20 25 2014 http://dx.doi.org/10.1016/j.compbiomed.2013.11.013 Search in Google Scholar

Watkins PB, Seligman PJ, Pears JS, Avigan MI, Senior JR, “Using controlled clinical trials to learn more about acute drug-induced liver injury”, Hepatology, Vol. 48, No. 5, pp. 1680–1689, 2008. http://dx.doi.org/10.1002/hep.22633 WatkinsPB SeligmanPJ PearsJS AviganMI SeniorJR “Using controlled clinical trials to learn more about acute drug-induced liver injury” Hepatology 48 5 1680 1689 2008 http://dx.doi.org/10.1002/hep.22633 Search in Google Scholar

Smusz S, Kurczab R, Bojarski AJ, “A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds”, Chemometr Intell Lab Syst, Vol. 128, pp. 89–100, 2013. http://dx.doi.org/10.1016/j.chemolab.2013.08.003 SmuszS KurczabR BojarskiAJ “A multidimensional analysis of machine learning methods performance in the classification of bioactive compounds” Chemometr Intell Lab Syst 128 89 100 2013 http://dx.doi.org/10.1016/j.chemolab.2013.08.003 Search in Google Scholar

Lu H, Ma X, Huang K, Azimi M., “Carbon trading volume and price forecasting in China using multiple machine learning models”, J Clean Prod., Vol. 249, Article No. 119386, 2020. http://dx.doi.org/10.1016/j.jclepro.2019.119386 LuH MaX HuangK AzimiM. “Carbon trading volume and price forecasting in China using multiple machine learning models” J Clean Prod. 249 Article No. 119386, 2020 http://dx.doi.org/10.1016/j.jclepro.2019.119386 Search in Google Scholar

Peng S, Wang W, Chen Y, Zhong X, Hu Q, “Regression-based hyperparameter learning for support vector machines”, IEEE Trans Neural Netw Learn Syst., Vol. 35, No. 12, pp. 18799–18813, 2024. http://dx.doi.org/10.1109/TNNLS.2023.3321685 PengS WangW ChenY ZhongX HuQ “Regression-based hyperparameter learning for support vector machines” IEEE Trans Neural Netw Learn Syst. 35 12 18799 18813 2024 http://dx.doi.org/10.1109/TNNLS.2023.3321685 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
1 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, Technik, andere