Open Access

Spectral Efficiency Classification Schemes for Future Network Communications(SECS)


Cite

T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 2006. CoverT. M. ThomasJ. A. Elements of Information Theory Hoboken, NJ, USA Wiley 2006 Search in Google Scholar

L. Daoben, Waveform Coding Theory of High Spectral Efficiency-OVTDM and Its Application. Beijing, China: Scientific, 2013. DaobenL. Waveform Coding Theory of High Spectral Efficiency-OVTDM and Its Application Beijing, China Scientific 2013 Search in Google Scholar

L. Daoben, “A novel high spectral efficiency waveform coding–OVFDM,” China Commun., vol. 12, no. 2, pp. 61–73, Feb. 2015. DaobenL. “A novel high spectral efficiency waveform coding–OVFDM,” China Commun. 12 2 61 73 Feb. 2015 Search in Google Scholar

S. G. Wilson, Digital Modulation and Coding. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996. WilsonS. G. Digital Modulation and Coding Englewood Cliffs, NJ, USA Prentice-Hall 1996 Search in Google Scholar

L. Daoben, “A novel high spectral efficiency waveform coding-OVTDM,” Int. J. Wireless Commun. Mobile Comput., vol. 2, nos. 1–4, pp. 11–26, Dec. 2014. DaobenL. “A novel high spectral efficiency waveform coding-OVTDM,” Int. J. Wireless Commun. Mobile Comput. 2 1–4 11 26 Dec. 2014 Search in Google Scholar

L. Daoben, Statistical Theory of Signal Detection and Estimation, 2nd ed. Beijing, China: Scientific, 2005 DaobenL. Statistical Theory of Signal Detection and Estimation 2nd ed. Beijing, China Scientific 2005 Search in Google Scholar

J. G. Proakis, Digital Communications. New York, NY, USA: McGraw-Hill, 2001. ProakisJ. G. Digital Communications New York, NY, USA McGraw-Hill 2001 Search in Google Scholar

G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, 1996. FoschiniG. J. “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J. 1 2 41 59 1996 Search in Google Scholar

G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, no. 3, pp. 311–335, Mar. 1998 FoschiniG. J. GansM. J. “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. 6 3 311 335 Mar. 1998 Search in Google Scholar

S. Wu, L. Kuang, Z. Ni, J. Lu, D. D. Huang, and Q. Guo, “Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 902–915, Oct. 2014. WuS. KuangL. NiZ. LuJ. HuangD. D. GuoQ. “Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing,” IEEE J. Sel. Topics Signal Process. 8 5 902 915 Oct. 2014 Search in Google Scholar

N. Wu, W. Yuan, H. Wang, Q. Shi, and J. Kuang, “Frequency-domain iterative message passing receiver for faster-than-Nyquist signaling in doubly selective channels,” IEEE Wireless Commun. Lett., vol. 5, no. 6, pp. 584–587, Dec. 2016. WuN. YuanW. WangH. ShiQ. KuangJ. “Frequency-domain iterative message passing receiver for faster-than-Nyquist signaling in doubly selective channels,” IEEE Wireless Commun. Lett. 5 6 584 587 Dec. 2016 Search in Google Scholar

J. CØspedes, P. M. Olmos, M. SÆnchez-FernÆndez, and F. Perez-Cruz, “Expectation propagation detection for high-order high-dimensional MIMO systems,” IEEE Trans. Commun., vol. 62, no. 8, pp. 2840–2849, Aug. 2014. CØspedesJ. OlmosP. M. SÆnchez-FernÆndezM. Perez-CruzF. “Expectation propagation detection for high-order high-dimensional MIMO systems,” IEEE Trans. Commun. 62 8 2840 2849 Aug. 2014 Search in Google Scholar

A. L. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino, “Millimeterwave massive MIMO: The next wireless revolution?” IEEE Commun. Mag., vol. 52, no. 9, pp. 56–62, Sep. 2014. SwindlehurstA. L. AyanogluE. HeydariP. CapolinoF. “Millimeterwave massive MIMO: The next wireless revolution?” IEEE Commun. Mag. 52 9 56 62 Sep. 2014 Search in Google Scholar

H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013. NgoH. Q. LarssonE. G. MarzettaT. L. “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun. 61 4 1436 1449 Apr. 2013 Search in Google Scholar

Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless Communication Technology With MATLAB. Beijing, China: Publishing House of Electronics Industry, 2013. ChoY. S. KimJ. YangW. Y. KangC. G. MIMO-OFDM Wireless Communication Technology With MATLAB Beijing, China Publishing House of Electronics Industry 2013 Search in Google Scholar

Y. D. Zhang, M. G. Amin, and B. Himed, “Altitude estimation of maneuvering targets in MIMO over-the-horizon radar,” in Proc. IEEE 7th IEEE Sensor Array Multichannel Signal Process. Workshop (SAM), Jun. 2012, pp. 257–260 ZhangY. D. AminM. G. HimedB. “Altitude estimation of maneuvering targets in MIMO over-the-horizon radar,” in Proc. IEEE 7th IEEE Sensor Array Multichannel Signal Process. Workshop (SAM) Jun. 2012 257 260 Search in Google Scholar

E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014. LarssonE. G. EdforsO. TufvessonF. MarzettaT. L. “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag. 52 2 186 195 Feb. 2014 Search in Google Scholar

U. Gustavsson et al., “On the impact of hardware impairments on massive MIMO,” in Proc. IEEE Global Telecommun. Conf. Workshops (GC Wkshps), Austin, TX, USA, Dec. 2014, pp. 294–300. GustavssonU. “On the impact of hardware impairments on massive MIMO,” in Proc. IEEE Global Telecommun. Conf. Workshops (GC Wkshps) Austin, TX, USA Dec. 2014 294 300 Search in Google Scholar

E. Björnson, M. Matthaiou, and M. Debbah, “Massive MIMO with nonideal arbitrary arrays: Hardware scaling laws and circuit-aware design,” IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 4353–4368, Aug. 2015. BjörnsonE. MatthaiouM. DebbahM. “Massive MIMO with nonideal arbitrary arrays: Hardware scaling laws and circuit-aware design,” IEEE Trans. Wireless Commun. 14 8 4353 4368 Aug. 2015 Search in Google Scholar

J. E. Mazo and H. J. Landau, “On the minimum distance problem for faster-than-Nyquist signaling,” IEEE Trans. Inf. Theory, vol. 34, no. 6, pp. 1420–1427, Nov. 1988. MazoJ. E. LandauH. J. “On the minimum distance problem for faster-than-Nyquist signaling,” IEEE Trans. Inf. Theory 34 6 1420 1427 Nov. 1988 Search in Google Scholar

F. Rusek and J. B. Anderson, “CTH04-1: On information rates for faster than Nyquist signaling,” in Proc. IEEE GLOBECOM, Nov./Dec. 2006, pp. 1–5. RusekF. AndersonJ. B. “CTH04-1: On information rates for faster than Nyquist signaling,” in Proc. IEEE GLOBECOM Nov./Dec. 2006 1 5 Search in Google Scholar

F. Rusek and J. B. Anderson, “Multistream faster than Nyquist signaling,” IEEE Trans. Commun., vol. 57, no. 5, pp. 1329–1340, May 2009. RusekF. AndersonJ. B. “Multistream faster than Nyquist signaling,” IEEE Trans. Commun. 57 5 1329 1340 May 2009 Search in Google Scholar

J. B. Anderson, F. Rusek, and V. Öwall, “Faster-than-Nyquist signaling,” Proc. IEEE, vol. 101, no. 8, pp. 1817–1830, Aug. 2013. AndersonJ. B. RusekF. ÖwallV. “Faster-than-Nyquist signaling,” Proc. IEEE 101 8 1817 1830 Aug. 2013 Search in Google Scholar

A. Prlja and J. B. Anderson, “Reduced-complexity receivers for strongly narrowband inter symbol interference introduced by faster-than-Nyquist signaling,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2591–2601, Sep. 2012. PrljaA. AndersonJ. B. “Reduced-complexity receivers for strongly narrowband inter symbol interference introduced by faster-than-Nyquist signaling,” IEEE Trans. Commun. 60 9 2591 2601 Sep. 2012 Search in Google Scholar

S. Sugiura, “Frequency-domain equalization of faster-than-Nyquist signaling,” IEEE Wireless Commun. Lett., vol. 2, no. 5, pp. 555–558, Oct. 2013. SugiuraS. “Frequency-domain equalization of faster-than-Nyquist signaling,” IEEE Wireless Commun. Lett. 2 5 555 558 Oct. 2013 Search in Google Scholar

J. Fan, S. Guo, X. Zhou, Y. Ren, G. Y. Li, and X. Chen, “Faster-than Nyquist signaling: An overview,” IEEE Access, vol. 5, pp. 1925–1940, 2017. FanJ. GuoS. ZhouX. RenY. LiG. Y. ChenX. “Faster-than Nyquist signaling: An overview,” IEEE Access 5 1925 1940 2017 Search in Google Scholar

K. Takeuchi, M. Vehkapera, T. Tanaka, and R. R. Muller, “Large-system analysis of joint channel and data estimation for MIMO DS-CDMA systems,” IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1385–1412, Mar. 2012. TakeuchiK. VehkaperaM. TanakaT. MullerR. R. “Large-system analysis of joint channel and data estimation for MIMO DS-CDMA systems,” IEEE Trans. Inf. Theory 58 3 1385 1412 Mar. 2012 Search in Google Scholar

D. Dasalukunte, V. Öwall, F. Rusek, and J. B. Anderson, Faster than Nyquist Signaling: Algorithms to Silicon. Dordrecht, The Netherlands: Springer, 2014. DasalukunteD. ÖwallV. RusekF. AndersonJ. B. Faster than Nyquist Signaling: Algorithms to Silicon Dordrecht, The Netherlands Springer 2014 Search in Google Scholar

E. Bedeer, M. H. Ahmed, and H. Yanikomeroglu, “A very low complexity successive symbol-by-symbol sequence estimator for faster-than-Nyquist signaling,” IEEE Access, vol. 5, pp. 7414–7422, 2017. BedeerE. AhmedM. H. YanikomerogluH. “A very low complexity successive symbol-by-symbol sequence estimator for faster-than-Nyquist signaling,” IEEE Access 5 7414 7422 2017 Search in Google Scholar

A. D. Liveris and C. N. Georghiades, “Exploiting faster-than-Nyquist signaling,” IEEE Trans. Commun., vol. 51, no. 9, pp. 1502–1511, Sep. 2003. LiverisA. D. GeorghiadesC. N. “Exploiting faster-than-Nyquist signaling,” IEEE Trans. Commun. 51 9 1502 1511 Sep. 2003 Search in Google Scholar

Y. J. D. Kim and J. Bajcsy, “Iterative receiver for faster-than-Nyquist broadcasting,” Electron. Lett., vol. 48, no. 24, pp. 1561–1562, Nov. 2012. KimY. J. D. BajcsyJ. “Iterative receiver for faster-than-Nyquist broadcasting,” Electron. Lett. 48 24 1561 1562 Nov. 2012 Search in Google Scholar

Y. J. D. Kim, J. Bajcsy, and D. Vargas, “Faster-than-Nyquist broadcasting in Gaussian channels: Achievable rate regions and coding,” IEEE Trans. Commun., vol. 64, no. 3, pp. 1016–1030, Mar. 2016. KimY. J. D. BajcsyJ. VargasD. “Faster-than-Nyquist broadcasting in Gaussian channels: Achievable rate regions and coding,” IEEE Trans. Commun. 64 3 1016 1030 Mar. 2016 Search in Google Scholar

T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 2006. CoverT. M. ThomasJ. A. Elements of Information Theory Hoboken, NJ, USA Wiley 2006 Search in Google Scholar

L. Daoben, Waveform Coding Theory of High Spectral Efficiency-OVTDM and Its Application. Beijing, China: Scientific, 2013. DaobenL. Waveform Coding Theory of High Spectral Efficiency-OVTDM and Its Application Beijing, China Scientific 2013 Search in Google Scholar

L. Daoben, “A novel high spectral efficiency waveform coding–OVFDM,” China Commun., vol. 12, no. 2, pp. 61–73, Feb. 2015. DaobenL. “A novel high spectral efficiency waveform coding–OVFDM,” China Commun. 12 2 61 73 Feb. 2015 Search in Google Scholar

S. G. Wilson, Digital Modulation and Coding. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996. WilsonS. G. Digital Modulation and Coding Englewood Cliffs, NJ, USA Prentice-Hall 1996 Search in Google Scholar

L. Daoben, “A novel high spectral efficiency waveform coding-OVTDM,” Int. J. Wireless Commun. Mobile Comput., vol. 2, nos. 1–4, pp. 11–26, Dec. 2014. DaobenL. “A novel high spectral efficiency waveform coding-OVTDM,” Int. J. Wireless Commun. Mobile Comput. 2 1–4 11 26 Dec. 2014 Search in Google Scholar

L. Daoben, Statistical Theory of Signal Detection and Estimation, 2nd ed. Beijing, China: Scientific, 2005 DaobenL. Statistical Theory of Signal Detection and Estimation 2nd ed. Beijing, China Scientific 2005 Search in Google Scholar

J. G. Proakis, Digital Communications. New York, NY, USA: McGraw-Hill, 2001. ProakisJ. G. Digital Communications New York, NY, USA McGraw-Hill 2001 Search in Google Scholar

G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41–59, 1996. FoschiniG. J. “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J. 1 2 41 59 1996 Search in Google Scholar

G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun., vol. 6, no. 3, pp. 311–335, Mar. 1998 FoschiniG. J. GansM. J. “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Pers. Commun. 6 3 311 335 Mar. 1998 Search in Google Scholar

S. Wu, L. Kuang, Z. Ni, J. Lu, D. D. Huang, and Q. Guo, “Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 902–915, Oct. 2014. WuS. KuangL. NiZ. LuJ. HuangD. D. GuoQ. “Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing,” IEEE J. Sel. Topics Signal Process. 8 5 902 915 Oct. 2014 Search in Google Scholar

N. Wu, W. Yuan, H. Wang, Q. Shi, and J. Kuang, “Frequency-domain iterative message passing receiver for faster-than-Nyquist signaling in doubly selective channels,” IEEE Wireless Commun. Lett., vol. 5, no. 6, pp. 584–587, Dec. 2016. WuN. YuanW. WangH. ShiQ. KuangJ. “Frequency-domain iterative message passing receiver for faster-than-Nyquist signaling in doubly selective channels,” IEEE Wireless Commun. Lett. 5 6 584 587 Dec. 2016 Search in Google Scholar

J. CØspedes, P. M. Olmos, M. SÆnchez-FernÆndez, and F. Perez-Cruz, “Expectation propagation detection for high-order high-dimensional MIMO systems,” IEEE Trans. Commun., vol. 62, no. 8, pp. 2840–2849, Aug. 2014. CØspedesJ. OlmosP. M. SÆnchez-FernÆndezM. Perez-CruzF. “Expectation propagation detection for high-order high-dimensional MIMO systems,” IEEE Trans. Commun. 62 8 2840 2849 Aug. 2014 Search in Google Scholar

A. L. Swindlehurst, E. Ayanoglu, P. Heydari, and F. Capolino, “Millimeterwave massive MIMO: The next wireless revolution?” IEEE Commun. Mag., vol. 52, no. 9, pp. 56–62, Sep. 2014. SwindlehurstA. L. AyanogluE. HeydariP. CapolinoF. “Millimeterwave massive MIMO: The next wireless revolution?” IEEE Commun. Mag. 52 9 56 62 Sep. 2014 Search in Google Scholar

H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436–1449, Apr. 2013. NgoH. Q. LarssonE. G. MarzettaT. L. “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun. 61 4 1436 1449 Apr. 2013 Search in Google Scholar

Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, MIMO-OFDM Wireless Communication Technology With MATLAB. Beijing, China: PublishingHouse of Electronics Industry, 2013. ChoY. S. KimJ. YangW. Y. KangC. G. MIMO-OFDM Wireless Communication Technology With MATLAB Beijing, China PublishingHouse of Electronics Industry 2013 Search in Google Scholar

Y. D. Zhang, M. G. Amin, and B. Himed, “Altitude estimation of maneuvering targets in MIMO over-the-horizon radar,” in Proc. IEEE 7th IEEE Sensor Array Multichannel Signal Process. Workshop (SAM), Jun. 2012, pp. 257–260 ZhangY. D. AminM. G. HimedB. “Altitude estimation of maneuvering targets in MIMO over-the-horizon radar,” in Proc. IEEE 7th IEEE Sensor Array Multichannel Signal Process. Workshop (SAM) Jun. 2012 257 260 Search in Google Scholar

E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014. LarssonE. G. EdforsO. TufvessonF. MarzettaT. L. “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag. 52 2 186 195 Feb. 2014 Search in Google Scholar

U. Gustavsson et al., “On the impact of hardware impairments on massive MIMO,” in Proc. IEEE Global Telecommun. Conf. Workshops (GC Wkshps), Austin, TX, USA, Dec. 2014, pp. 294–300. GustavssonU. “On the impact of hardware impairments on massive MIMO,” in Proc. IEEE Global Telecommun. Conf. Workshops (GC Wkshps) Austin, TX, USA Dec. 2014 294 300 Search in Google Scholar

E. Björnson, M. Matthaiou, and M. Debbah, “Massive MIMO with nonideal arbitrary arrays: Hardware scaling laws and circuit-aware design,” IEEE Trans. Wireless Commun., vol. 14, no. 8, pp. 4353–4368, Aug. 2015. BjörnsonE. MatthaiouM. DebbahM. “Massive MIMO with nonideal arbitrary arrays: Hardware scaling laws and circuit-aware design,” IEEE Trans. Wireless Commun. 14 8 4353 4368 Aug. 2015 Search in Google Scholar

J. E. Mazo and H. J. Landau, “On the minimum distance problem for faster-than-Nyquist signaling,” IEEE Trans. Inf. Theory, vol. 34, no. 6, pp. 1420–1427, Nov. 1988. MazoJ. E. LandauH. J. “On the minimum distance problem for faster-than-Nyquist signaling,” IEEE Trans. Inf. Theory 34 6 1420 1427 Nov. 1988 Search in Google Scholar

F. Rusek and J. B. Anderson, “CTH04-1: On information rates for faster than Nyquist signaling,” in Proc. IEEE GLOBECOM, Nov./Dec. 2006, pp. 1–5. RusekF. AndersonJ. B. “CTH04-1: On information rates for faster than Nyquist signaling,” in Proc. IEEE GLOBECOM Nov./Dec. 2006 1 5 Search in Google Scholar

F. Rusek and J. B. Anderson, “Multistream faster than Nyquist signaling,” IEEE Trans. Commun., vol. 57, no. 5, pp. 1329–1340, May 2009. RusekF. AndersonJ. B. “Multistream faster than Nyquist signaling,” IEEE Trans. Commun. 57 5 1329 1340 May 2009 Search in Google Scholar

J. B. Anderson, F. Rusek, and V. Öwall, “Faster-than-Nyquist signaling,” Proc. IEEE, vol. 101, no. 8, pp. 1817–1830, Aug. 2013. AndersonJ. B. RusekF. ÖwallV. “Faster-than-Nyquist signaling,” Proc. IEEE 101 8 1817 1830 Aug. 2013 Search in Google Scholar

A. Prlja and J. B. Anderson, “Reduced-complexity receivers for strongly narrowband intersymbol interference introduced by faster-than-Nyquist signaling,” IEEE Trans. Commun., vol. 60, no. 9, pp. 2591–2601, Sep. 2012. PrljaA. AndersonJ. B. “Reduced-complexity receivers for strongly narrowband intersymbol interference introduced by faster-than-Nyquist signaling,” IEEE Trans. Commun. 60 9 2591 2601 Sep. 2012 Search in Google Scholar

S. Sugiura, “Frequency-domain equalization of faster-than-Nyquist signaling,” IEEE Wireless Commun. Lett., vol. 2, no. 5, pp. 555–558, Oct. 2013. SugiuraS. “Frequency-domain equalization of faster-than-Nyquist signaling,” IEEE Wireless Commun. Lett. 2 5 555 558 Oct. 2013 Search in Google Scholar

J. Fan, S. Guo, X. Zhou, Y. Ren, G. Y. Li, and X. Chen, “Faster-thanNyquist signaling: An overview,” IEEE Access, vol. 5, pp. 1925–1940,2017. FanJ. GuoS. ZhouX. RenY. LiG. Y. ChenX. “Faster-thanNyquist signaling: An overview,” IEEE Access 5 1925 1940 2017 Search in Google Scholar

K. Takeuchi, M. Vehkapera, T. Tanaka, and R. R. Muller, “Large-system analysis of joint channel and data estimation for MIMO DS-CDMA systems,” IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1385–1412, Mar. 2012. TakeuchiK. VehkaperaM. TanakaT. MullerR. R. “Large-system analysis of joint channel and data estimation for MIMO DS-CDMA systems,” IEEE Trans. Inf. Theory 58 3 1385 1412 Mar. 2012 Search in Google Scholar

D. Dasalukunte, V. Öwall, F. Rusek, and J. B. Anderson, Faster than Nyquist Signaling: Algorithms to Silicon. Dordrecht, The Netherlands: Springer, 2014. DasalukunteD. ÖwallV. RusekF. AndersonJ. B. Faster than Nyquist Signaling: Algorithms to Silicon Dordrecht, The Netherlands Springer 2014 Search in Google Scholar

E. Bedeer, M. H. Ahmed, and H. Yanikomeroglu, “A very low complexity successive symbol-by-symbol sequence estimator for faster-than-Nyquist signaling,” IEEE Access, vol. 5, pp. 7414–7422, 2017. BedeerE. AhmedM. H. YanikomerogluH. “A very low complexity successive symbol-by-symbol sequence estimator for faster-than-Nyquist signaling,” IEEE Access 5 7414 7422 2017 Search in Google Scholar

A. D. Liveris and C. N. Georghiades, “Exploiting faster-than-Nyquist signaling,” IEEE Trans. Commun., vol. 51, no. 9, pp. 1502–1511, Sep. 2003. LiverisA. D. GeorghiadesC. N. “Exploiting faster-than-Nyquist signaling,” IEEE Trans. Commun. 51 9 1502 1511 Sep. 2003 Search in Google Scholar

Y. J. D. Kim and J. Bajcsy, “Iterative receiver for faster-than-Nyquist broadcasting,” Electron. Lett., vol. 48, no. 24, pp. 1561–1562, Nov. 2012. KimY. J. D. BajcsyJ. “Iterative receiver for faster-than-Nyquist broadcasting,” Electron. Lett. 48 24 1561 1562 Nov. 2012 Search in Google Scholar

Y. J. D. Kim, J. Bajcsy, and D. Vargas, “Faster-than-Nyquist broadcasting in Gaussian channels: Achievable rate regions and coding,” IEEE Trans. Commun., vol. 64, no. 3, pp. 1016–1030, Mar. 2016. KimY. J. D. BajcsyJ. VargasD. “Faster-than-Nyquist broadcasting in Gaussian channels: Achievable rate regions and coding,” IEEE Trans. Commun. 64 3 1016 1030 Mar. 2016 Search in Google Scholar

eISSN:
2470-8038
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Computer Sciences, other