This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Tracey DF, Noya EG, Doye JPK (2019) Programming patchy particles to form complex periodic structures. J. Chem. Phys.151, 224506.TraceyDFNoyaEGDoyeJPK2019Programming patchy particles to form complex periodic structuresJ. Chem. Phys.151224506Search in Google Scholar
Romano F, Sanz E, Sciortino F (2011) Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys.134, 174502.RomanoFSanzESciortinoF2011Crystallization of tetrahedral patchy particles in silicoJ. Chem. Phys.134174502Search in Google Scholar
Noya EG, Zubieta I, Pine DJ, Sciortino F (2019) Assembly of clathrates from tetrahedral patchy colloids with narrow patches. J. Chem. Phys.151: 094502.NoyaEGZubietaIPineDJSciortinoF2019Assembly of clathrates from tetrahedral patchy colloids with narrow patchesJ. Chem. Phys.151094502Search in Google Scholar
Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ (2012) Colloids with valence and specific directional bonding. Nature491: 51.WangYWangYBreedDRManoharanVNFengLHollingsworthADWeckMPineDJ2012Colloids with valence and specific directional bondingNature49151Search in Google Scholar
Soto R, Golestanian R (2015) Self-assembly of active colloidal molecules with dynamic function. Phys. Rev. E91: 052304.SotoRGolestanianR2015Self-assembly of active colloidal molecules with dynamic functionPhys. Rev. E91052304Search in Google Scholar
Ni S, Leemann J, Buttinoni I, Isa L, Wolf H (2016) Programmable colloidal molecules from sequential capillarity-assisted particle assembly. Science Advances2: e1501779.NiSLeemannJButtinoniIIsaLWolfH2016Programmable colloidal molecules from sequential capillarity-assisted particle assemblyScience Advances2e1501779Search in Google Scholar
Elacqua E, Zheng X, Shillingford C, Liu M, Weck M (2017) Molecular recognition in the colloidal world. Acc. Chem. Res.50: 2756.ElacquaEZhengXShillingfordCLiuMWeckM2017Molecular recognition in the colloidal worldAcc. Chem. Res.502756Search in Google Scholar
Gong Z, Hueckel Z, Yi GR, Sacanna S (2017) Patchy particles made by colloidal fusion. Nature364: 550, 234.GongZHueckelZYiGRSacannaS2017Patchy particles made by colloidal fusionNature364550234Search in Google Scholar
Zhu J, Li M, Rogers R, Meyer W, Ottewill RH, STS-73 Space Shuttle Crew, Russel WB, Chaikin PM (1997) Crystallization of hard-sphere colloids in microgravity. Nature387: 883.ZhuJLiMRogersRMeyerWOttewillRHSTS-73 Space Shuttle CrewRusselWBChaikinPM1997Crystallization of hard-sphere colloids in microgravityNature387883Search in Google Scholar
Cheng Z, Zhu J, Russel WB, Meyer WV, Chaikin PM (2001) Colloidal hard-sphere crystallization kinetics in microgravity and normal gravity. Applied Optics40: 4146.ChengZZhuJRusselWBMeyerWVChaikinPM2001Colloidal hard-sphere crystallization kinetics in microgravity and normal gravityApplied Optics404146Search in Google Scholar
Li W, Lan D, Sun Z, Geng B, Wang X, Tian W, Zhai G, Wang Y (2016) Colloidal material box: In-situ observations of colloidal self-assembly and liquid crystal phase transitions in microgravity. Microgravity Sci. Technol.28: 179.LiWLanDSunZGengBWangXTianWZhaiGWangY2016Colloidal material box: In-situ observations of colloidal self-assembly and liquid crystal phase transitions in microgravityMicrogravity Sci. Technol.28179Search in Google Scholar
Veen SJ, Potenza M, Alaimo M, Antoniuk O, Mazzoni S, Schall P, Wegdam G (2012) Colloidal aggregation in microgravity by critical Casimir forces. Phys. Rev. Lett.109: 248302.VeenSJPotenzaMAlaimoMAntoniukOMazzoniSSchallPWegdamG2012Colloidal aggregation in microgravity by critical Casimir forcesPhys. Rev. Lett.109248302Search in Google Scholar
Fisher ME, de Gennes P-G (1978) Physique des colloides. C. R. Acad. Sci. Ser. B287: 207.FisherMEde GennesP-G1978Physique des colloidesC. R. Acad. Sci. Ser. B287207Search in Google Scholar
Hertlein C, Helden L, Gambassi A, Dietrich S, Bechinger C (2008) Direct measurement of critical Casimir forces. Nature451: 172–175.HertleinCHeldenLGambassiADietrichSBechingerC2008Direct measurement of critical Casimir forcesNature451172175Search in Google Scholar
Gambassi A, Maciołek A, Hertlein C, Nellen U, Helden L, Bechinger C, Dietrich S (2009) Critical Casimir effect in classical binary liquid mixtures. Phys. Rev. E80: 061143.GambassiAMaciołekAHertleinCNellenUHeldenLBechingerCDietrichS2009Critical Casimir effect in classical binary liquid mixturesPhys. Rev. E80061143Search in Google Scholar
Mohry TF, Kondrat S, Maciołek A, Dietrich S (2014) Critical Casimir interactions around the consolute point of a binary solvent. Soft Matter10: 5510.MohryTFKondratSMaciołekADietrichS2014Critical Casimir interactions around the consolute point of a binary solventSoft Matter105510Search in Google Scholar
Maciolek A, Dietrich S (2018), Collective behavior of colloids due to critical Casimir interactions. Rev. Mod. Phys.90: 045001.MaciolekADietrichS2018Collective behavior of colloids due to critical Casimir interactionsRev. Mod. Phys.90045001Search in Google Scholar
Nguyen VD, Dang T, Schall PT (2016) Critical Casimir forces for colloidal assembly. Topical Review, J. Phys.: Condens. Matter28: 043001.NguyenVDDangTSchallPT2016Critical Casimir forces for colloidal assemblyTopical Review, J. Phys.: Condens. Matter28043001Search in Google Scholar
Guo H, Narayanan T, Sztucki M, Schall P, Wegdam G (2008) Reversible phase transition of colloids in a binary liquid solvent. Phys. Rev. Lett.100: 188303.GuoHNarayananTSztuckiMSchallPWegdamG2008Reversible phase transition of colloids in a binary liquid solventPhys. Rev. Lett.100188303Search in Google Scholar
Nguyen D, Faber S, Wegdam G, Hu Z, Schall P (2013) Controlling colloidal phase transitions with critical Casimir forces. Nature communications4: 1584.NguyenDFaberSWegdamGHuZSchallP2013Controlling colloidal phase transitions with critical Casimir forcesNature communications41584Search in Google Scholar
Shelke P, Nguyen D, Limaye AV, Schall P (2013) Controlling colloidal morphologies by critical Casimir forces. Adv. Mater.25: 1499.ShelkePNguyenDLimayeAVSchallP2013Controlling colloidal morphologies by critical Casimir forcesAdv. Mater.251499Search in Google Scholar
Dang T, Vila-Verde A, Nguyen D, Bolhuis P, Schall P (2013) Temperature-sensitive colloidal phase behavior induced by critical Casimir forces. J. Chem. Phys.139: 094903.DangTVila-VerdeANguyenDBolhuisPSchallP2013Temperature-sensitive colloidal phase behavior induced by critical Casimir forcesJ. Chem. Phys.139094903Search in Google Scholar
Stuij S, Labbe-Laurent M, Kodger TE, Maciolek A, Schall P (2017) Critical Casimir interactions between colloids around the critical point of binary solvents. Soft Matter13: 5233.StuijSLabbe-LaurentMKodgerTEMaciolekASchallP2017Critical Casimir interactions between colloids around the critical point of binary solventsSoft Matter135233Search in Google Scholar
Potenza M, Manca A, Veen SJ, Weber B, Mazzoni S, Schall P, Wegdam GH (2014) Dynamics of colloidal aggregation in microgravity by critical Casimir forces. Europhys. Lett.106: 68005.PotenzaMMancaAVeenSJWeberBMazzoniSSchallPWegdamGH2014Dynamics of colloidal aggregation in microgravity by critical Casimir forcesEurophys. Lett.10668005Search in Google Scholar
Potenza MA, Veen SJ, Schall P, Wegdam GH (2018) Nucleation of weakly attractive aggregates in microgravity. Europhys. Lett.124: 28002.PotenzaMAVeenSJSchallPWegdamGH2018Nucleation of weakly attractive aggregates in microgravityEurophys. Lett.12428002Search in Google Scholar
Mazzoni S, Potenza M, Alaimo M, Veen SJ, Dielissen M, Leussink E, Dewandel J-L, Minster O, Kufner E, Wegdam G, Schall P (2013) SODI-COLLOID: A combination of static and dynamic light scattering on board the International Space Station. Review of Scientific Instruments84: 043704.MazzoniSPotenzaMAlaimoMVeenSJDielissenMLeussinkEDewandelJ-LMinsterOKufnerEWegdamGSchallP2013SODI-COLLOID: A combination of static and dynamic light scattering on board the International Space StationReview of Scientific Instruments84043704Search in Google Scholar
Rouwhorst J, Ness C, Zaccone A, Schall P (2020) Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction. Nature Comm.11: 3558.RouwhorstJNessCZacconeASchallP2020Nonequilibrium continuous phase transition in colloidal gelation with short-range attractionNature Comm.113558Search in Google Scholar
Rouwhorst J, Ness C, Zaccone A, Schall P (2020) Nonequilibrium master kinetic equation modelling of colloidal gelation. Phys. Rev. E102: 022602.RouwhorstJNessCZacconeASchallP2020Nonequilibrium master kinetic equation modelling of colloidal gelationPhys. Rev. E102022602Search in Google Scholar
Stuij S, Rouwhorst J, Jonas HJ, Ruffino N, Gong Z, Sacanna S, Bolhuis PG, Schall P (2021) Revealing polymerization kinetics with colloidal dipatch particles. Phys. Rev. Lett.127: 108001.StuijSRouwhorstJJonasHJRuffinoNGongZSacannaSBolhuisPGSchallP2021Revealing polymerization kinetics with colloidal dipatch particlesPhys. Rev. Lett.127108001Search in Google Scholar
Flory PJ (1953) Principles of Polymer Chemistry, Ithaca: Cornell University Press.FloryPJ1953Principles of Polymer ChemistryIthacaCornell University PressSearch in Google Scholar
Jonas HJ, Stuij S, Schall P, Bolhuis PG (2021) A temperature dependent critical Casimir patchy particle model benchmarked onto experiment. J. Chem. Phys.155: 034902.JonasHJStuijSSchallPBolhuisPG2021A temperature dependent critical Casimir patchy particle model benchmarked onto experimentJ. Chem. Phys.155034902Search in Google Scholar
Bianchi E, Largo J, Tartaglia P, Zaccarelli E, Sciortino F (2006) Phase diagram of patchy colloids: Towards empty liquids. Phys. Rev. Lett.97: 168301.BianchiELargoJTartagliaPZaccarelliESciortinoF2006Phase diagram of patchy colloids: Towards empty liquidsPhys. Rev. Lett.97168301Search in Google Scholar
Sciortino F (2016) Basic concepts in self-assembly. Proceedings of the International School of Physics „Enrico Fermi“193: 1–17.SciortinoF2016Basic concepts in self-assemblyProceedings of the International School of Physics „Enrico Fermi“193117Search in Google Scholar
Chapman WG, Jackson G, Gubbins KE (1988) Phase equilibria of associating fluids: Chain molecules with multiple bonding sites. Molecular Physics65: 1057.ChapmanWGJacksonGGubbinsKE1988Phase equilibria of associating fluids: Chain molecules with multiple bonding sitesMolecular Physics651057Search in Google Scholar
Sciortino F, Bianchi E, Douglas JF, Tartaglia P (2007) Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation. J. Chem. Phys.126: 194903.SciortinoFBianchiEDouglasJFTartagliaP2007Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulationJ. Chem. Phys.126194903Search in Google Scholar
de Las Heras D, JM Tavares, Telo da Gama M (2011) Soft matter. Soft Matter12: 5615.de Las HerasDTavaresJMTelo da GamaM2011Soft matterSoft Matter125615Search in Google Scholar
Russo J, Tartaglia P, Sciortino F (2010) Association of limited valence patchy particles in two dimensions. Soft Matter6: 4229.RussoJTartagliaPSciortinoF2010Association of limited valence patchy particles in two dimensionsSoft Matter64229Search in Google Scholar
Swinkels P, Sinaasappel R, Gong Z, Sacanna S, Meyer WV, Sciortino F, Schall P (2024) Equilibrium gels from patchy particles. Phys. Rev. Lett.132: 078203.SwinkelsPSinaasappelRGongZSacannaSMeyerWVSciortinoFSchallP2024Equilibrium gels from patchy particlesPhys. Rev. Lett.132078203Search in Google Scholar
Swinkels PJM, Stuij SG, Gong Z, Jonas H, van der Linden B, Bolhuis PG, Sacanna S, Woutersen S, Schall P (2021) Revealing conformational dynamics of colloidal alkanes. Nature Comm.12: 2810.SwinkelsPJMStuijSGGongZJonasHvan der LindenBBolhuisPGSacannaSWoutersenSSchallP2021Revealing conformational dynamics of colloidal alkanesNature Comm.122810Search in Google Scholar
Kilpatrick JE, Pitzer KS, Spitzer R (1947) The thermodynamics and molecular structure of cyclopentane. J. Am. Chem. Soc.69: 2483–2488.KilpatrickJEPitzerKSSpitzerR1947The thermodynamics and molecular structure of cyclopentaneJ. Am. Chem. Soc.6924832488Search in Google Scholar
Poupko R, Luz Z, Zimmermann H (1982) Pseudorotation in cyclopentane. An experimental determination of the puckering amplitude by NMR in oriented solvents. J. Am. Chem. Soc.104: 5307.PoupkoRLuzZZimmermannH1982Pseudorotation in cyclopentane. An experimental determination of the puckering amplitude by NMR in oriented solventsJ. Am. Chem. Soc.1045307Search in Google Scholar
Ocola EJ, Bauman LE, Laane J (2011) Vibrational spectra and structure of cyclopentane and its isotopomers. J. Phys. Chem. A115: 6531.OcolaEJBaumanLELaaneJ2011Vibrational spectra and structure of cyclopentane and its isotopomersJ. Phys. Chem. A1156531Search in Google Scholar
Kowalewski P, Frey H-M, Infanger D, Leutwyler S (2015) Probing the structure, pseudorotation, and radial vibrations of cyclopentane by femtosecond rotational Raman coherence spectroscopy. J. Phys. Chem. A119: 11215.KowalewskiPFreyH-MInfangerDLeutwylerS2015Probing the structure, pseudorotation, and radial vibrations of cyclopentane by femtosecond rotational Raman coherence spectroscopyJ. Phys. Chem. A11911215Search in Google Scholar