Accesso libero

Colloidal molecules in microgravity assembled by critical Casimir forces

, , ,  e   
14 mar 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Tracey DF, Noya EG, Doye JPK (2019) Programming patchy particles to form complex periodic structures. J. Chem. Phys. 151, 224506. TraceyDF NoyaEG DoyeJPK 2019 Programming patchy particles to form complex periodic structures J. Chem. Phys. 151 224506 Search in Google Scholar

Romano F, Sanz E, Sciortino F (2011) Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502. RomanoF SanzE SciortinoF 2011 Crystallization of tetrahedral patchy particles in silico J. Chem. Phys. 134 174502 Search in Google Scholar

Noya EG, Zubieta I, Pine DJ, Sciortino F (2019) Assembly of clathrates from tetrahedral patchy colloids with narrow patches. J. Chem. Phys. 151: 094502. NoyaEG ZubietaI PineDJ SciortinoF 2019 Assembly of clathrates from tetrahedral patchy colloids with narrow patches J. Chem. Phys. 151 094502 Search in Google Scholar

Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ (2012) Colloids with valence and specific directional bonding. Nature 491: 51. WangY WangY BreedDR ManoharanVN FengL HollingsworthAD WeckM PineDJ 2012 Colloids with valence and specific directional bonding Nature 491 51 Search in Google Scholar

Soto R, Golestanian R (2015) Self-assembly of active colloidal molecules with dynamic function. Phys. Rev. E 91: 052304. SotoR GolestanianR 2015 Self-assembly of active colloidal molecules with dynamic function Phys. Rev. E 91 052304 Search in Google Scholar

Ni S, Leemann J, Buttinoni I, Isa L, Wolf H (2016) Programmable colloidal molecules from sequential capillarity-assisted particle assembly. Science Advances 2: e1501779. NiS LeemannJ ButtinoniI IsaL WolfH 2016 Programmable colloidal molecules from sequential capillarity-assisted particle assembly Science Advances 2 e1501779 Search in Google Scholar

Elacqua E, Zheng X, Shillingford C, Liu M, Weck M (2017) Molecular recognition in the colloidal world. Acc. Chem. Res. 50: 2756. ElacquaE ZhengX ShillingfordC LiuM WeckM 2017 Molecular recognition in the colloidal world Acc. Chem. Res. 50 2756 Search in Google Scholar

Gong Z, Hueckel Z, Yi GR, Sacanna S (2017) Patchy particles made by colloidal fusion. Nature 364: 550, 234. GongZ HueckelZ YiGR SacannaS 2017 Patchy particles made by colloidal fusion Nature 364 550 234 Search in Google Scholar

Zhu J, Li M, Rogers R, Meyer W, Ottewill RH, STS-73 Space Shuttle Crew, Russel WB, Chaikin PM (1997) Crystallization of hard-sphere colloids in microgravity. Nature 387: 883. ZhuJ LiM RogersR MeyerW OttewillRH STS-73 Space Shuttle Crew RusselWB ChaikinPM 1997 Crystallization of hard-sphere colloids in microgravity Nature 387 883 Search in Google Scholar

Cheng Z, Zhu J, Russel WB, Meyer WV, Chaikin PM (2001) Colloidal hard-sphere crystallization kinetics in microgravity and normal gravity. Applied Optics 40: 4146. ChengZ ZhuJ RusselWB MeyerWV ChaikinPM 2001 Colloidal hard-sphere crystallization kinetics in microgravity and normal gravity Applied Optics 40 4146 Search in Google Scholar

Li W, Lan D, Sun Z, Geng B, Wang X, Tian W, Zhai G, Wang Y (2016) Colloidal material box: In-situ observations of colloidal self-assembly and liquid crystal phase transitions in microgravity. Microgravity Sci. Technol. 28: 179. LiW LanD SunZ GengB WangX TianW ZhaiG WangY 2016 Colloidal material box: In-situ observations of colloidal self-assembly and liquid crystal phase transitions in microgravity Microgravity Sci. Technol. 28 179 Search in Google Scholar

Veen SJ, Potenza M, Alaimo M, Antoniuk O, Mazzoni S, Schall P, Wegdam G (2012) Colloidal aggregation in microgravity by critical Casimir forces. Phys. Rev. Lett. 109: 248302. VeenSJ PotenzaM AlaimoM AntoniukO MazzoniS SchallP WegdamG 2012 Colloidal aggregation in microgravity by critical Casimir forces Phys. Rev. Lett. 109 248302 Search in Google Scholar

Fisher ME, de Gennes P-G (1978) Physique des colloides. C. R. Acad. Sci. Ser. B 287: 207. FisherME de GennesP-G 1978 Physique des colloides C. R. Acad. Sci. Ser. B 287 207 Search in Google Scholar

Hertlein C, Helden L, Gambassi A, Dietrich S, Bechinger C (2008) Direct measurement of critical Casimir forces. Nature 451: 172–175. HertleinC HeldenL GambassiA DietrichS BechingerC 2008 Direct measurement of critical Casimir forces Nature 451 172 175 Search in Google Scholar

Gambassi A, Maciołek A, Hertlein C, Nellen U, Helden L, Bechinger C, Dietrich S (2009) Critical Casimir effect in classical binary liquid mixtures. Phys. Rev. E 80: 061143. GambassiA MaciołekA HertleinC NellenU HeldenL BechingerC DietrichS 2009 Critical Casimir effect in classical binary liquid mixtures Phys. Rev. E 80 061143 Search in Google Scholar

Mohry TF, Kondrat S, Maciołek A, Dietrich S (2014) Critical Casimir interactions around the consolute point of a binary solvent. Soft Matter 10: 5510. MohryTF KondratS MaciołekA DietrichS 2014 Critical Casimir interactions around the consolute point of a binary solvent Soft Matter 10 5510 Search in Google Scholar

Maciolek A, Dietrich S (2018), Collective behavior of colloids due to critical Casimir interactions. Rev. Mod. Phys. 90: 045001. MaciolekA DietrichS 2018 Collective behavior of colloids due to critical Casimir interactions Rev. Mod. Phys. 90 045001 Search in Google Scholar

Nguyen VD, Dang T, Schall PT (2016) Critical Casimir forces for colloidal assembly. Topical Review, J. Phys.: Condens. Matter 28: 043001. NguyenVD DangT SchallPT 2016 Critical Casimir forces for colloidal assembly Topical Review, J. Phys.: Condens. Matter 28 043001 Search in Google Scholar

Guo H, Narayanan T, Sztucki M, Schall P, Wegdam G (2008) Reversible phase transition of colloids in a binary liquid solvent. Phys. Rev. Lett. 100: 188303. GuoH NarayananT SztuckiM SchallP WegdamG 2008 Reversible phase transition of colloids in a binary liquid solvent Phys. Rev. Lett. 100 188303 Search in Google Scholar

Nguyen D, Faber S, Wegdam G, Hu Z, Schall P (2013) Controlling colloidal phase transitions with critical Casimir forces. Nature communications 4: 1584. NguyenD FaberS WegdamG HuZ SchallP 2013 Controlling colloidal phase transitions with critical Casimir forces Nature communications 4 1584 Search in Google Scholar

Shelke P, Nguyen D, Limaye AV, Schall P (2013) Controlling colloidal morphologies by critical Casimir forces. Adv. Mater. 25: 1499. ShelkeP NguyenD LimayeAV SchallP 2013 Controlling colloidal morphologies by critical Casimir forces Adv. Mater. 25 1499 Search in Google Scholar

Dang T, Vila-Verde A, Nguyen D, Bolhuis P, Schall P (2013) Temperature-sensitive colloidal phase behavior induced by critical Casimir forces. J. Chem. Phys. 139: 094903. DangT Vila-VerdeA NguyenD BolhuisP SchallP 2013 Temperature-sensitive colloidal phase behavior induced by critical Casimir forces J. Chem. Phys. 139 094903 Search in Google Scholar

Stuij S, Labbe-Laurent M, Kodger TE, Maciolek A, Schall P (2017) Critical Casimir interactions between colloids around the critical point of binary solvents. Soft Matter 13: 5233. StuijS Labbe-LaurentM KodgerTE MaciolekA SchallP 2017 Critical Casimir interactions between colloids around the critical point of binary solvents Soft Matter 13 5233 Search in Google Scholar

Potenza M, Manca A, Veen SJ, Weber B, Mazzoni S, Schall P, Wegdam GH (2014) Dynamics of colloidal aggregation in microgravity by critical Casimir forces. Europhys. Lett. 106: 68005. PotenzaM MancaA VeenSJ WeberB MazzoniS SchallP WegdamGH 2014 Dynamics of colloidal aggregation in microgravity by critical Casimir forces Europhys. Lett. 106 68005 Search in Google Scholar

Potenza MA, Veen SJ, Schall P, Wegdam GH (2018) Nucleation of weakly attractive aggregates in microgravity. Europhys. Lett. 124: 28002. PotenzaMA VeenSJ SchallP WegdamGH 2018 Nucleation of weakly attractive aggregates in microgravity Europhys. Lett. 124 28002 Search in Google Scholar

Mazzoni S, Potenza M, Alaimo M, Veen SJ, Dielissen M, Leussink E, Dewandel J-L, Minster O, Kufner E, Wegdam G, Schall P (2013) SODI-COLLOID: A combination of static and dynamic light scattering on board the International Space Station. Review of Scientific Instruments 84: 043704. MazzoniS PotenzaM AlaimoM VeenSJ DielissenM LeussinkE DewandelJ-L MinsterO KufnerE WegdamG SchallP 2013 SODI-COLLOID: A combination of static and dynamic light scattering on board the International Space Station Review of Scientific Instruments 84 043704 Search in Google Scholar

Rouwhorst J, Ness C, Zaccone A, Schall P (2020) Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction. Nature Comm. 11: 3558. RouwhorstJ NessC ZacconeA SchallP 2020 Nonequilibrium continuous phase transition in colloidal gelation with short-range attraction Nature Comm. 11 3558 Search in Google Scholar

Rouwhorst J, Ness C, Zaccone A, Schall P (2020) Nonequilibrium master kinetic equation modelling of colloidal gelation. Phys. Rev. E 102: 022602. RouwhorstJ NessC ZacconeA SchallP 2020 Nonequilibrium master kinetic equation modelling of colloidal gelation Phys. Rev. E 102 022602 Search in Google Scholar

Stuij S, Rouwhorst J, Jonas HJ, Ruffino N, Gong Z, Sacanna S, Bolhuis PG, Schall P (2021) Revealing polymerization kinetics with colloidal dipatch particles. Phys. Rev. Lett. 127: 108001. StuijS RouwhorstJ JonasHJ RuffinoN GongZ SacannaS BolhuisPG SchallP 2021 Revealing polymerization kinetics with colloidal dipatch particles Phys. Rev. Lett. 127 108001 Search in Google Scholar

Flory PJ (1953) Principles of Polymer Chemistry, Ithaca: Cornell University Press. FloryPJ 1953 Principles of Polymer Chemistry Ithaca Cornell University Press Search in Google Scholar

Jonas HJ, Stuij S, Schall P, Bolhuis PG (2021) A temperature dependent critical Casimir patchy particle model benchmarked onto experiment. J. Chem. Phys. 155: 034902. JonasHJ StuijS SchallP BolhuisPG 2021 A temperature dependent critical Casimir patchy particle model benchmarked onto experiment J. Chem. Phys. 155 034902 Search in Google Scholar

Bianchi E, Largo J, Tartaglia P, Zaccarelli E, Sciortino F (2006) Phase diagram of patchy colloids: Towards empty liquids. Phys. Rev. Lett. 97: 168301. BianchiE LargoJ TartagliaP ZaccarelliE SciortinoF 2006 Phase diagram of patchy colloids: Towards empty liquids Phys. Rev. Lett. 97 168301 Search in Google Scholar

Sciortino F (2016) Basic concepts in self-assembly. Proceedings of the International School of Physics „Enrico Fermi“ 193: 1–17. SciortinoF 2016 Basic concepts in self-assembly Proceedings of the International School of Physics „Enrico Fermi“ 193 1 17 Search in Google Scholar

Chapman WG, Jackson G, Gubbins KE (1988) Phase equilibria of associating fluids: Chain molecules with multiple bonding sites. Molecular Physics 65: 1057. ChapmanWG JacksonG GubbinsKE 1988 Phase equilibria of associating fluids: Chain molecules with multiple bonding sites Molecular Physics 65 1057 Search in Google Scholar

Sciortino F, Bianchi E, Douglas JF, Tartaglia P (2007) Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation. J. Chem. Phys. 126: 194903. SciortinoF BianchiE DouglasJF TartagliaP 2007 Self-assembly of patchy particles into polymer chains: A parameter-free comparison between Wertheim theory and Monte Carlo simulation J. Chem. Phys. 126 194903 Search in Google Scholar

de Las Heras D, JM Tavares, Telo da Gama M (2011) Soft matter. Soft Matter 12: 5615. de Las HerasD TavaresJM Telo da GamaM 2011 Soft matter Soft Matter 12 5615 Search in Google Scholar

Russo J, Tartaglia P, Sciortino F (2010) Association of limited valence patchy particles in two dimensions. Soft Matter 6: 4229. RussoJ TartagliaP SciortinoF 2010 Association of limited valence patchy particles in two dimensions Soft Matter 6 4229 Search in Google Scholar

Swinkels P, Sinaasappel R, Gong Z, Sacanna S, Meyer WV, Sciortino F, Schall P (2024) Equilibrium gels from patchy particles. Phys. Rev. Lett. 132: 078203. SwinkelsP SinaasappelR GongZ SacannaS MeyerWV SciortinoF SchallP 2024 Equilibrium gels from patchy particles Phys. Rev. Lett. 132 078203 Search in Google Scholar

Swinkels PJM, Stuij SG, Gong Z, Jonas H, van der Linden B, Bolhuis PG, Sacanna S, Woutersen S, Schall P (2021) Revealing conformational dynamics of colloidal alkanes. Nature Comm. 12: 2810. SwinkelsPJM StuijSG GongZ JonasH van der LindenB BolhuisPG SacannaS WoutersenS SchallP 2021 Revealing conformational dynamics of colloidal alkanes Nature Comm. 12 2810 Search in Google Scholar

Kilpatrick JE, Pitzer KS, Spitzer R (1947) The thermodynamics and molecular structure of cyclopentane. J. Am. Chem. Soc. 69: 2483–2488. KilpatrickJE PitzerKS SpitzerR 1947 The thermodynamics and molecular structure of cyclopentane J. Am. Chem. Soc. 69 2483 2488 Search in Google Scholar

Poupko R, Luz Z, Zimmermann H (1982) Pseudorotation in cyclopentane. An experimental determination of the puckering amplitude by NMR in oriented solvents. J. Am. Chem. Soc. 104: 5307. PoupkoR LuzZ ZimmermannH 1982 Pseudorotation in cyclopentane. An experimental determination of the puckering amplitude by NMR in oriented solvents J. Am. Chem. Soc. 104 5307 Search in Google Scholar

Ocola EJ, Bauman LE, Laane J (2011) Vibrational spectra and structure of cyclopentane and its isotopomers. J. Phys. Chem. A 115: 6531. OcolaEJ BaumanLE LaaneJ 2011 Vibrational spectra and structure of cyclopentane and its isotopomers J. Phys. Chem. A 115 6531 Search in Google Scholar

Kowalewski P, Frey H-M, Infanger D, Leutwyler S (2015) Probing the structure, pseudorotation, and radial vibrations of cyclopentane by femtosecond rotational Raman coherence spectroscopy. J. Phys. Chem. A 119: 11215. KowalewskiP FreyH-M InfangerD LeutwylerS 2015 Probing the structure, pseudorotation, and radial vibrations of cyclopentane by femtosecond rotational Raman coherence spectroscopy J. Phys. Chem. A 119 11215 Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
2 volte all'anno
Argomenti della rivista:
Scienze biologiche, Scienze della vita, altro, Scienze materiali, Scienze materiali, altro, Fisica, Fisica, altro