Cite

1. Adeolu, M., Gupta, R. S., 2014: A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek, 105, 6, 1049—1072. DOI: 10.1007/s10482-014-0164-x.10.1007/s10482-014-0164-x24744012 Search in Google Scholar

2. Aronowitz, R. A., 2012: The rise and fall of the lyme disease vaccines: a cautionary tale for risk interventions in American medicine and public health. Milbank Q, 90, 2, 250—277. DOI: 10.1111/j.1468-0009.2012.00663.x.10.1111/j.1468-0009.2012.00663.x346020822709388 Search in Google Scholar

3. Bencurova, E., Gupta, S. K., Oskoueian, E., Bhide, M., Dandekar, T., 2018: Omics and bioinformatics applied to vaccine development against Borrelia. Mol. Omics., 14, 5, 330—340. DOI: 10.1039/c8mo00130h.10.1039/C8MO00130H Search in Google Scholar

4. Bensaci, M., Bhattacharya, D., Clark, R., Linden, T. Hu., 2012: Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi vaccination. Vaccine, 30, 42, 6040—6046. DOI: 10.1016/j.vaccine.2012.07.053.10.1016/j.vaccine.2012.07.053393895422864146 Search in Google Scholar

5. Bins, A. D., Jorritsma, A., Wolkers, M. C., Hung, Ch. Fu., Wu, T. C., Schumacher, T. N. M., Haanen, J. B. A. G., 2005: A rapid and potent DNA vaccination strategy defined by in vivo monitoring of antigen expression. Nat. Med., 11, 8, 899—904. DOI: 10.1038/nm1264.10.1038/nm126415965482 Search in Google Scholar

6. Bunikis, J., Tsao, J., Luke, C. J., Luna, A. G., Fish, D., Barbour, A. G., 2004: Borrelia burgdorferi infection in a natural population of Peromyscus leucopus mice: a longitudinal study in an area where Lyme Borreliosis is highly endemic. J. Infect. Dis., 189, 8, 1515—1523. DOI: 10.1086/382594.10.1086/38259415073690 Search in Google Scholar

7. CDC 24/7: Saving Lives, Protecting PeopleTM: Notice to Readers Availability of Lyme Disease Vaccine. https://www.cdc.gov/mmwr/preview/mmwrhtml/00056299.htm. Updated January 22, 1999. Accesed February 19, 2021. Search in Google Scholar

8. Comstedt, P., Hanner, M., Schüler. W., Meinke, A., Schlegl, R., Lundberg, U., 2015: Characterization and optimization of a novel vaccine for protection against Lyme borreliosis. Vaccine, 33, 44, 5982—5988. DOI: 10.1016/j. vaccine.2015.07.095.10.1016/j.vaccine.2015.07.095 Search in Google Scholar

9. Earnhart, C. G., Buckles, E. L., Marconi, R. T, 2006: Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine, 25, 3, 466—480. DOI: 10.1016/j.vaccine.2006.07.052.10.1016/j.vaccine.2006.07.05216996663 Search in Google Scholar

10. Earnhart, C. G., Marconi, R. T., 2007: Construction and analysis of variants of a polyvalent Lyme disease vaccine: approaches for improving the immune response to chimeric vaccinogens. Vaccine, 25, 17, 3419—3427. DOI: 10.1016/j. vaccine.2006.12.051.10.1016/j.vaccine.2006.12.051 Search in Google Scholar

11. Embers, M. E., Narasimhan, S., 2013: Vaccination against Lyme disease: past, present, and future. Front. Cell Infect. Microbiol., 3, 6. DOI: 10.3389/fcimb.2013.00006.10.3389/fcimb.2013.00006356983823407755 Search in Google Scholar

12. Federizon, J., Frye, A., Huang, W-C., Hart, T. M., He, X., Beltran, C., et al., 2020: Immunogenicity of the Lyme disease antigen OspA, particleized by cobalt porphyrin-phospholipid liposomes. Vaccine, 38, 4, 942—950. DOI: 10.1016/j.vaccine.2019.10.073.10.1016/j.vaccine.2019.10.073698077231727504 Search in Google Scholar

13. Fingerle, V., Schulte-Spechtel, U. C., Ruzic-Sabljic, E., Leonhard, S., Hofmann, H., Weber, K., et al., 2008: Epidemiological aspects and molecular characterization of Borrelia burgdorferi s. l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. Int. J. Med. Microbiol., 2, 279—290. DOI: 10.1016/j.ijmm.2007.05.002.10.1016/j.ijmm.2007.05.00217616434 Search in Google Scholar

14. Gerritzen, M. J. H., Martens, D. E., Wijffels, R. H., Van der Pol, L., Stork, M., 2017: Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv., 35, 5, 565—574. DOI: 10.1016/j.biotechadv.2017.05.003.10.1016/j.biotechadv.2017.05.00328522212 Search in Google Scholar

15. Gomes-Solecki, M., Arnaboldi, P. M., Backenson, P. B., Benach, J. L., Cooper, C. L., Dattwyler, R. J., et al., 2020: Protective immunity and new vaccines for Lyme disease. Clin. Infect. Dis., 70, 8, 1768—1773. DOI: 10.1093/cid/ciz872.10.1093/cid/ciz872715578231620776 Search in Google Scholar

16. Gomes-Solecki, M. J. C., Brisson, D. R., Dattwyler, R. J., 2006: Oral vaccine that breaks the transmission cycle of the Lyme disease spirochete can be delivered via bait. Vaccine, 24, 20, 4440—4449: DOI: 10.1016/j.vaccine.2005.08.089.10.1016/j.vaccine.2005.08.08916198456 Search in Google Scholar

17. Hassan, W. S., Giaretta, P. R., Rech, R., Ollivault- Shiflett, M., Esteve-Gasent, M., 2019: Enhanced protective efficacy of Borrelia burgdorferi BB0172 derived-peptide based vaccine to control Lyme disease. Vaccine, 37, 5596—5606. DOI: 10.1016/j.vaccine.2019.07.092.10.1016/j.vaccine.2019.07.09231387750 Search in Google Scholar

18. Izac, J. R., O’Bier, N. S., Oliver, L. D., Camire, A. C., Earnhart, C. G., LeBlanc Rhodes, D. L. V., et al., 2020: Development and optimization of OspC chimeritope vaccinogens for Lyme disease. Vaccine, 38, 8,1915—1924. DOI: 10. 1016/j.vaccine.2020.01.027.10.1016/j.vaccine.2020.01.027708541031959423 Search in Google Scholar

19. Jan, A. T, 2017: Outer membrane vesicles (OMVs) of Gram-negative bacteria: A perspective update. Front. Microbiol., 8, 1053. DOI: 10.3389/fmicb.2017.01053.10.3389/fmicb.2017.01053546529228649237 Search in Google Scholar

20. Kamp, H. D., Swanson, K. A., Wei, R. R., Pradeep, K. D., Dharanipragada, R., Kern, A., Sharma, B., et al., 2020: Design of a broadly reactive Lyme disease vaccine. Npj. Vaccines, 5, 1, 1—10. DOI: 10.1038/s41541-020-0183-8.10.1038/s41541-020-0183-8719541232377398 Search in Google Scholar

21. Khatchikian, C. E., Nadelman, R. B., Nowakowski, J., Schwartz, I., Wormser, G. P., Brisson, D., 2014: Evidence for strain-specific immunity in patients treated for early Lyme disease. Infect. Immun., 82, 4, 1408—1411. DOI: 10.1128/IAI. 01451-13.10.1128/IAI.01451-13 Search in Google Scholar

22. Klouwens, M. J., Salverda, M. L. M., Trentelman, J. J., Ersoz, J. I., Wagemakers, A., Gerrizten, M. J., et al., 2021: Vaccination with meningococcal outer membrane vesicles carrying Borrelia OspA protects against experimental Lyme borreliosis. Vaccine, 39,18, 2561—2567. DOI: 10.1016/j.vac cine.2021.03.059.10.1016/j.vaccine.2021.03.059 Search in Google Scholar

23. Klouwens, M. J., Trentelman, J. J., Ersoz, J. I., Nieves Marques Porto, F., Sima, R., Hajdusek, O., et al., 2021: Investigating BB0405 as a novel Borrelia afzelii vaccination candidate in Lyme borreliosis. Sci. Rep., 11, 1, 4775. DOI: 10.1038/s41598-021-84130-y.10.1038/s41598-021-84130-y791057333637813 Search in Google Scholar

24. Klouwens, M. J., Trentelman, J. J. A., Wagemakers, A., Ersoz, J. I., Bins, A. D., Hovius, J. W., 2021: Tick-tattoo: DNA vaccination against B. burgdorferi or Ixodes scapularis tick proteins. Front. Immunol., 12, 615011. DOI: 10.3389/fim mu.2021.615011.10.3389/fimmu.2021.615011 Search in Google Scholar

25. Kuleš, J., Horvatić, A., Guillemin, N., Galan, A., Mrljak, V., Bhide, M., 2016: New approaches and omics tools for mining of vaccine candidates against vector-borne diseases. Mol. Biosyst., 12, 9, 2680—2694. DOI: 10.1039/C6MB00 268D.10.1039/C6MB00268D Search in Google Scholar

26. Kumar, M., Kaur, S., Kariu, T., Yang, X., Bossis, I., Anderson, J. F., et al., 2011: Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine. Vaccine, 29, 48, 9012—9019, DOI: 10.1016/j.vaccine. 2011.09.035.10.1016/j.vaccine.2011.09.035 Search in Google Scholar

27. Kung, F., Kaur, S., Smith, A. A.,Yang, X., Wilder, C. N., Sharma, K., et al., 2016: A Borrelia burgdorferi surface-exposed transmembrane protein lacking detectable immune responses supports pathogen persistence and constitutes a vaccine target. J. Infect. Dis., 213, 11, 1786—1795. DOI: 10.1093/infdis/jiw013.10.1093/infdis/jiw013485746826747708 Search in Google Scholar

28. Kutzler, M. A., Weiner, D. B., 2008: DNA vaccines: ready for prime time ? Nat. Rev. Genet., 9, 10, 776—788. DOI: 10. 1038/nrg2432.10.1038/nrg2432431729418781156 Search in Google Scholar

29. LaFleur, R. L., Callister, S. M., Dant, J. C., Jobe, D. A., Lovrich, S. D., Warner, T. F., et al., 2010: One-year duration of immunity induced by vaccination with a canine Lyme disease bacterin. Clin. Vaccine Immunol., 17, 5, 870—874. DOI: 10. 1128/CVI.00524-09.10.1128/CVI.00524-09286339720237200 Search in Google Scholar

30. LaFleur, R. L., Dant, J. C., Wasmoen, T. L., Callister, S. M., Jobe, D. A., Lovrich, S., D., et al., 2009: Bacterin that induces anti-OspA and anti-OspC borreliacidal antibodies provides a high level of protection against canine Lyme disease. Clin. Vaccine Immunol., 16, 2, 253—259. DOI: 10. 1128/CVI.00373-08.10.1128/CVI.00373-08264353419052162 Search in Google Scholar

31. Levy, S. A., 2002: Use of a C6 ELISA test to evaluate the efficacy of a whole-cell bacterin for the prevention of naturally transmitted canine Borrelia burgdorferi infection. Vet. Ther. Res. Appl. Vet. Med., 3, 4, 420—424.32. Search in Google Scholar

32. Levy, S. A., Millership, J., Glover, S., Parker, D., Hogan, J., Heldorfer, M., et al., 2010: Confirmation of presence of Borrelia burgdorferi outer surface protein C antigen and production of antibodies to Borrelia burgdorferi outer surface protein C in dogs vaccinated with a whole-cell Borrelia burgdorferi bacterin. Intern. J. Appl Vet. Med., 8, 3, 123—128. Search in Google Scholar

33. Little, S. E., Heise, S. R., Blagburn, B. L., Callister, S. M., Mead, P. S., 2010: Lyme borreliosis in dogs and humans in the USA. Trends Parasitol., 26, 4, 213–—218. DOI: 10.1016/j.pt.2010.01.006.10.1016/j.pt.2010.01.00620207198 Search in Google Scholar

34. Mancini, F., Rossi, O., Necchi, F., Micholi, F., 2020: OMV vaccines and the role of TLR agonists in immune response. Int. J. Mol. Sci., 21, 12, 4416. DOI: 10.3390/ijms21124416.10.3390/ijms21124416735223032575921 Search in Google Scholar

35. Marconi, R. T., Garcia-Tapia, D., Hoevers, J., Honsberger, N., King, V. L., Ritter, D., et al., 2020: VANGUARD®cr-Lyme: A next generation Lyme disease vaccine that prevents B. burgdorferi infection in dogs. Vaccine X, 6, 11, 100079. DOI: 10.1016/j.jvacx.2020.100079.10.1016/j.jvacx.2020.100079773314433336185 Search in Google Scholar

36. Meirelles Richer, L., Aroso, M., Contente-Cuomo, T., Ivanova, L., Gomes-Solecki, M., 2011: Reservoir targeted vaccine for Lyme borreliosis induces a yearlong, neutralizing antibody response to OspA in white-footed mice. Clin. Vaccine Immunol., CVI, 11, 18, 1809—1816. DOI: 10.1128/CVI.05226-11.10.1128/CVI.05226-11320901221918116 Search in Google Scholar

37. Murfin, K. E., Fikrig, E., 2017: Tick bioactive molecules as novel therapeutics: Beyond vaccine targets. Front. Cell Infect. Microbiol., 7, 222. DOI: 10.3389/fcimb.2017.00222.10.3389/fcimb.2017.00222545989228634573 Search in Google Scholar

38. Nadelman, R. B., Wormser G. P., 1998: Lyme borreliosis. Lancet, 352, 9127, 557—565. DOI: 10.1016/S0140-6736 (98)01146-5.10.1016/S0140-6736(98)01146-5 Search in Google Scholar

39. Nardelli, D. T., Munson, E. L., Callister, S. M., Schell, R., 2009: Human Lyme disease vaccines: past and future concerns. Future Microbiol., 4, 4, 457—469. DOI: 10.2217/fmb. 09.17.10.2217/fmb.09.17 Search in Google Scholar

40. Nayak, A., Schüler, W., Seidel, S., Gomez, I., Meinke, A., Comstedt, P., et al., 2020: Broadly protective multivalent OspA vaccine against Lyme borreliosis, developed based on surface shaping of the C-terminal fragment. Infect Immun., 88, 4. DOI: 10.1128/IAI.00917-19.10.1128/IAI.00917-19709314131932330 Search in Google Scholar

41. Nelson, C. A., Saha, S., Kugeler, K. J., Delorey, M. J., Shankar, M. B., Hinckley, A. F., et al., 2015: Incidence of clinician-diagnosed Lyme disease, United States, 2005—2010. Emerg. Infect. Dis., 21, 9, 1625—1631. DOI: 10.3201/eid2109.150417.10.3201/eid2109.150417455014726291194 Search in Google Scholar

42. Nigrovic, L. E., Thompson, K. M., 2007: The Lyme vaccine: a cautionary tale. Epidemiol. Infect., 135, 1, 1—8. DOI: 10. 1017/S0950268806007096.10.1017/S0950268806007096287055716893489 Search in Google Scholar

43. Pereira, V. B., Zurita-Turk, M., Saraiva, T. D. L., De Castro, C. P., Souza, B. M., Agresti, P. M., et al., 2014: DNA vaccines approach: From concepts to applications. World J. Vaccines, 4, 2, 50—71. DOI: 10.4236/wjv.2014.42008.10.4236/wjv.2014.42008 Search in Google Scholar

44. Plotkin, S. A., 2016: Need for a new Lyme disease vaccine. N. Engl. J. Med., 375, 10, 911—913. DOI: 10.1056/NEJMp 1607146.10.1056/NEJMp1607146 Search in Google Scholar

45. Pol van der, L., Stork, M., Ley van der, P., 2015: Outer membrane vesicles as platform vaccine technology. Biotechnol. J., 10, 11, 1689—1706. DOI: 10.1002/biot.201400395.10.1002/biot.201400395476864626912077 Search in Google Scholar

46. Poland, G. A., 2011: Vaccines against Lyme disease: What happened and what lessons can we learn ? Clin. Infect. Dis., 52, 253—258. DOI: 10.1093/cid/ciq116.10.1093/cid/ciq11621217172 Search in Google Scholar

47. Radolf, J. D., Caimano, M. J., Stevenson, B., Hu, L. T., 2012: Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol., 10, 2, 87—99. DOI: 10.1038/nrmicro2714.10.1038/nrmicro2714331346222230951 Search in Google Scholar

48. Rizzoli, A., Hauffe, H. C., Carpi, G., Vourc’h, G. I., Neteler, M., Rosa, R., 2011: Lyme borreliosis in Europe. Eurosurveillance, 16, 27, 19906, 1—8. DOI: 10.2807/ese.16.27. 19906-en.10.2807/ese.16.27.19906-en Search in Google Scholar

49. RxList, 2016: Side Effects of Lymerix (Lipoprotein Outer Surface A Vaccine), Warnings, Uses. RxList. https://www.rx-list.com/lymerix-side-effects-drug-center.htm. Last reviewed on RxList April 29, 2016. Accessed February 19, 2021. Search in Google Scholar

50. Scheckelhoff, M. R., Telford, S. R., Hu, L. T., 2006: Protective efficacy of an oral vaccine to reduce carriage of Borrelia burgdorferi (strain N40) in mouse and tick reservoirs. Vaccine, 24, 11, 1949—1957. DOI: 10.1016/j.vaccine. 2005.10.044.10.1016/j.vaccine.2005.10.044 Search in Google Scholar

51. Schuijt, T. J., Hovius, J. W., Poll van der, T., Dam van, A. P., Fikrig, E., 2011: Lyme borreliosis vaccination: the facts, the challenge, the future. Trends Parasitol., 27, 1, 40—47. DOI: 10.1016/j.pt.2010.06.006.10.1016/j.pt.2010.06.00620594913 Search in Google Scholar

52. Seinost, G., Golde, W. T., Berger, B. W., Dunn, J. J., Qiu, D., Dunkin, D. S., et al., 1999: Infection with multiple strains of Borrelia burgdorferi sensu stricto in patients with Lyme disease. Arch. Dermatol., 135, 11, 1329—1333. DOI: 10.1001/archderm.135.11.1329.10.1001/archderm.135.11.132910566830 Search in Google Scholar

53. Sigal, L. H., Zahradnik, J. M., Lavin, P., Patella, S. J., Bryant, G., Haselby, R., et al., 1998: A vaccine consisting of recombinant Borrelia burgdorferi outer-surface protein A to prevent Lyme disease. Recombinant outer-surface protein A Lyme disease. N. Engl. J. Med., 339, 4, 216—222. DOI: 10.1056/NEJM199807233390402.10.1056/NEJM1998072333904029673299 Search in Google Scholar

54. Šmit, R., Postma, M. J., 2015: Lyme borreliosis: reviewing potential vaccines, clinical aspects and health economics. Expert. Rev. Vaccines, 14, 12, 1549—1561. DOI: 10.1586/1476 0584.2015.1091313.10.1586/14760584.2015.1091313 Search in Google Scholar

55. Stanek, G., Wormser, G., Gray, J., Strle, F., 2012: Lyme borreliosis. Lancet, 379, 9814, 461—473. DOI: 10.1016/S01 40-6736(11)60103-7.10.1016/S0140-6736(11)60103-7 Search in Google Scholar

56. Steere, A. C., Sikand, V. K., Meurice, F. Parenti, D. L., Fikrig, E., Schoen, R. T., et al., 1998: Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. Lyme Disease Vaccine Study Group. N. Engl. J. Med., 339, 4, 209—215. DOI: 10. 1056/NEJM199807233390401.10.1056/NEJM1998072333904019673298 Search in Google Scholar

57. Steere, A. C., Strle. F., Wormser, G. P., Hu, L. T., Branda, J. A., Hovius, J. W. R., et al., 2016: Lyme borreliosis. Nat. Rev. Dis. Primer, 2, 16090. DOI: 10.1038/nrdp.2016.90.10.1038/nrdp.2016.90553953927976670 Search in Google Scholar

58. Sykes, R. A., Makiello, P., 2017: An estimate of Lyme borreliosis incidence in western Europe. J. Public Health Oxf. Engl., 39, 1, 74—81. DOI: 10.1093/pubmed/fdw017.10.1093/pubmed/fdw01726966194 Search in Google Scholar

59. Todaro, W. T., Schoen, R. T., 2000: The Lyme disease vaccine: Conception, development, and implementation. Ann. Intern. Med., 132, 8, 661—668.10.7326/0003-4819-132-8-200004180-0000910766685 Search in Google Scholar

60. Töpfer, K. H., Straubinger, R. K., 2007: Characterization of the humoral immune response in dogs after vaccination against the Lyme borreliosis agent: A study with five commercial vaccines using two different vaccination schedules. Vaccine, 25, 2, 314—326. DOI: 10.1016/j.vaccine.2006.07.031.10.1016/j.vaccine.2006.07.03116930782 Search in Google Scholar

61. Valneva, 2020: Valneva Announces Acceleration of Pediatric Development for Lyme Disease Vaccine Candidate—Valneva. https://valneva.com/press-release/valneva-announces-acceleration-of-pediatric-development-for-lyme-disease-vaccine-candidate/. Updated December 2, 2020. Accessed February 4, 2021 Search in Google Scholar

62. Valneva, 2021: Valneva Announces Positive Initial Results for Phase 2 Study of Lyme Disease Vaccine Candidate—Valneva. https://valneva.com/press-release/valneva-announces-positive-initial-results-for-phase-2-study-of-lyme-disease-vaccine-candidate/. Updated July 22, 2020. Accessed February 4, 2021. Search in Google Scholar

63. Valneva, 2021: Valneva Announces Positive Initial Results for Second Phase 2 Study of Lyme Disease Vaccine Candidate VLA15—Valneva. https://valneva.com/press-release/valneva-announces-positive-initial-results-for-second-phase-2-study-of-lyme-disease-vaccine-candidate-vla15/. Updated October 20, 2020. Accessed February 4, 2021. Search in Google Scholar

64. Wagemakers, A., Mason, L. M. K., Oei, A., Wever de, B., Poll van der, T., Bins, A. D., et al., 2014: Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection. Gene Ther., 21, 1051—1057. DOI: 10. 1038/gt.2014.87.10.1038/gt.2014.8725273355 Search in Google Scholar

65. We Respect Animals—Bioveta, 2015: Borrelym 3—new unique vaccine. https://www.bioveta.eu/en/news/news-in-assortment/borrelym-3-new-unique-vaccine.html: Updated March 3, 2015. Accesssed March 15, 2020. Search in Google Scholar

eISSN:
2453-7837
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine