1. bookVolume 65 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Open Access

Cultivable Oral Microbiota in Puppies

Published Online: 05 Oct 2021
Volume & Issue: Volume 65 (2021) - Issue 3 (September 2021)
Page range: 69 - 74
Received: 13 Aug 2021
Accepted: 14 Sep 2021
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

The oral microbiota has been shown to be different in children born by caesarean section and delivered vaginally. The aim of this study was to investigate the oral microbial diversity in healthy puppies and to determine whether the birth mode affects the composition of the oral microbiota. A total of 19 puppies from 4 dams were included in the study. The puppies were divided into two groups depending on the birth mode, vaginal delivery (vaginal born VB) or caesarean delivery (caesar-ean section CS). On the seventh day after birth, swabs of the oral cavity were taken. All samples were analysed by bacteriological cultivation under aerobic and anaerobic conditions. Bacterial colonies were identified by Sanger sequencing of 16S rRNA. A total of 64 bacterial strains belonging to 10 genera were obtained from the oral swabs. The genera Staphylococcus (30.23 % VB and 47.62 % CS) and Enterococcus (25.58 % VB and 33.33 % CS) were the most abundant in both groups. The genera Escherichia (18.60 %) and Enterobacter (16.28 %) were largely present in puppies delivered vaginally, they were not found in puppies born by caesarean section. The other detected genera were present at lower proportions (< 5 %) and varied between the groups. The oral micro-biota of the puppies in the litter was similar, but differed between litters and between groups. Based on these results, we can assume that the birth mode affects the oral microbiota of puppies.

Keywords

1. Chusri, S., Chongsuvivatwong, V., Rivera, J. I., Silpapojakul, K., Singkhamanan, K., McNeil, E., Doi, Y., 2014: Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob. Agents Chemother., 58, 7, 4172—4179. DOI: 10.1128/AAC. 02992-14.10.1128/AAC Search in Google Scholar

2. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., Knight, R., 2010: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U. S. A., 107, 26, 11971—11975. DOI: 10.1073/pnas.1002601107.10.1073/pnas.1002601107290069320566857 Search in Google Scholar

3. Elliott, D. R., Wilson, M., Buckley, C. M., Spratt, D. A., 2005: Cultivable oral microbiota of domestic dogs. J. Clin. Microbiol., 43, 11, 5470—5476. DOI: 10.1128/JCM.43.11.5470-5476.2005.10.1128/JCM.43.11.5470-5476.2005128777716272472 Search in Google Scholar

4. Holgerson, P. L., Harnevik, L., Hernell, O., Tanner, A. C., Johansson, I., 2011: Mode of birth delivery affects oral microbiota in infants. J. Dent. Res., 90, 10, 1183—1188. DOI: 10. 1177/0022034511418973.10.1177/0022034511418973317301221828355 Search in Google Scholar

5. Isaiah, A., Hoffmann, A. R., Kelley, R., Mundell, P., Steiner, J. M., Suchodolski, J. S., 2017: Characterization of the nasal and oral microbiota of detection dogs. PLOS ONE, 12, 9, e0184899. DOI: 10.1371/journal.pone.0184899.10.1371/journal.pone.0184899560822328934260 Search in Google Scholar

6. Junsawat, C., Chinkangsadarn, T., Sangthong, D., 2019: The study of newborn foal oral microbiota diversity. J. Mahanakorn Vet. Med., 14, 1, 1—12. Search in Google Scholar

7. Klotz, P., Jacobmeyer, L., Leidner, U., Stamm, I., Semmler, T., Ewers, C., 2017: Acinetobacter pittii from companion animals coharboring blaOXA-58, the tet(39) region, and other resistance genes on a single plasmid. Antimicrob. Agents Chemother., 62, 1, e01993-17. DOI: 10.1128/AAC.01993-17.10.1128/AAC.01993-17574033729109166 Search in Google Scholar

8. Komiyama, E. Y., Lepesqueur, L. S., Yassuda, C. G., Samaranayake, L. P., Parahitiyawa, N. B., Balducci, I., Koga-Ito, C. Y., 2016: Enterococcus species in the oral cavity: prevalence, virulence factors and antimicrobial susceptibility. PLOS ONE, 11, 9, e0163001. DOI: 10.1371/journal.pone.0163001.10.1371/journal.pone.0163001502516327631785 Search in Google Scholar

9. Kubašová, I., Strompfová, V., Lauková, A., 2017: Safety assessment of commensal enterococci from dogs. Folia Microbiol. (Prague), 62, 6, 491—498. DOI: 10.1007/s12223-017-0521-z.10.1007/s12223-017-0521-z28316009 Search in Google Scholar

10. Naser, S. M., Vancanneyt, M., De Graef, E., Devriese, L. A., Snauwaert, C., Lefebvre, K., et al., 2005: Enterococcus canintestini sp. nov., from faecal samples of healthy dogs. Int. J. Syst. Evol. Microbiol., 55, 5, 2177—2182. DOI: 10.1099/ijs.0.63752-0.10.1099/ijs.0.63752-016166728 Search in Google Scholar

11. Nelun Barfod, M., Magnusson, K., Lexner, M. O., Blomqvist, S., Dahlén, G., Twetman, S., 2011: Oral microflora in infants delivered vaginally and by caesarean section. Int. J. Paediatr. Dent., 21, 6, 401—406. DOI: 10.1111/j.1365-263X. 2011.01136.x. Search in Google Scholar

12. Ramirez, D., Giron, M., 2021: Enterobacter Infections. Stat-Pearls [Internet]. Treasure Island (FL), StatPearls Publishing. Bookshelf ID: NBK559296. Search in Google Scholar

13. Ruparell, A., Inui, T., Staunton, R., Wallis, C., Deusch, O., Holcombe, L. J., 2020: The canine oral microbiome: variation in bacterial populations across different niches. BMC Microbiol., 20, 1, 42. DOI: 10.1186/s12866-020-1704-3.10.1186/s12866-020-1704-3704805632111160 Search in Google Scholar

14. Sahin-Tóth, J., Kovács, E., Tóthpál, A., Juhász, J., Forró, B., Bányai, K., et al., 2021: Whole genome sequencing of coagulase positive staphylococci from a dog-and-owner screening survey. PLOS ONE, 16, 1, e0245351. DOI: 10.1371/journal. pone.0245351. Search in Google Scholar

15. Sampaio-Maia, B., Monteiro-Silva, F., 2014: Acquisition and maturation of oral microbiome throughout childhood: an update. Dent. Res. J. (Isfahan), 11, 3, 291—301. Search in Google Scholar

16. Shafeeq, S., Wang, X., Lünsdorf, H., Brauner, A., Römling, U., 2020: Draft genome sequence of the urinary catheter isolate Enterobacter ludwigii CEB04 with high biofilm forming capacity. Microorganisms, 8, 4, 522. DOI: 10.3390/microorga nisms8040522. Search in Google Scholar

17. Spears, J. K., Vester Boler, B., Gardner, C., Li, Q., 2017: Development of the oral microbiome in kittens. In Companion Animal Nutrition (CAN) Summit: The Nexus of Pet and Human Nutrition: Focus on Cognition and Microbiome. Helsinki, Finland, May 4—7, 73—81. Search in Google Scholar

18. Suepaul, S., Georges, K., Unakal, C., Boyen, F., Sookhoo, J., Ashraph, K., et al., 2021: Determination of the frequency, species distribution and antimicrobial resistance of staphylococci isolated from dogs and their owners in Trinidad. PLOS ONE, 16, 7, e0254048. DOI: 10.1371/journal.pone.0254048.10.1371/journal.pone.0254048825340534214140 Search in Google Scholar

19. Weese J. S., 2013: The canine and feline skin microbiome in health and disease. Vet. Dermatol., 24, 1, 137—145.e31. DOI: 10.1111/j.1365-3164.2012.01076.x.10.1111/j.1365-3164.2012.01076.x23331690 Search in Google Scholar

20. Wu, S., Yu, F., Ma, L., Zhao, Y., Zheng, X., Li, X., et al., 2021: Do maternal microbes shape newborn oral microbes ? Indian J. Microbiol., 61, 1, 16—23. DOI: 10.1007/s12088-020-00901-7.10.1007/s12088-020-00901-7781080833505088 Search in Google Scholar

21. Xiao, J., Fiscella, K. A., Gill, S. R., 2020: Oral microbiome: possible harbinger for children’s health. Int. J. Oral Sci., 12, 1, 12. DOI: 10.1038/s41368-020-0082-x.10.1038/s41368-020-0082-x719071632350240 Search in Google Scholar

22. Zakošek Pipan, M., Kajdič, L., Kalin, A., Plavec, T., Zdovc, I., 2020: Do newborn puppies have their own microbiota at birth? Influence of type of birth on newborn puppy microbiota. Theriogenology, 152, 18—28. DOI: 10.1016/j.theriogeno logy.2020.04.014. Search in Google Scholar

23. Zheng, D., Liwinski, T., Elinav, E., 2020: Interaction between microbiota and immunity in health and disease. Cell Res., 30, 6, 492—506. DOI: 10.1038/s41422-020-0332-7.10.1038/s41422-020-0332-7726422732433595 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo