1. bookVolume 65 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

Ozonization of Water, Retention of Ozone and Devitalization of Escherichia Coli in Water By Ozone

Published Online: 05 Oct 2021
Volume & Issue: Volume 65 (2021) - Issue 3 (September 2021)
Page range: 40 - 50
Received: 21 Jun 2021
Accepted: 10 Aug 2021
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of this study was to observe the efficiency of ozone transferred by an airstone bubble diffuser, using two ozone generators with different output of ozone (5 g.h–1 ‒ G1; 15 g.h–1 ‒ G2). The retention of ozone in ozonised distilled and potable water and the devitalisation effects on E. coli in the water were also noted. Ozone was introduced to two types of potable water of different composition intended for mass consumption, (MC)a and (MC)b, distilled water, and well water intended for individual consumption. The devitalisation effect of ozone on E. coli in well water (WW) and added to potable and distilled water was observed. The results of our study showed that under the conditions used, the level of ozone during ozonisation with G1 increased more rapidly in distilled water and after termination of ozonisation, the retention of ozone in distilled water was a little lower in comparison with the potable water. The devitalisation of E. coli either naturally present in the water or added to it required the level of ozone close to or equal to 0.25 mg.l–1.

Keywords

1. Andoyo, R., Prawitasari, I. A. P., Mardawati, E., Cahyana, Y., Sukarminah, E., Rialita, T., et al., 2018: Retention time of ozone at various water conditions. In 3rd Padjadjaran International Physics Symposium, IOP Publ., J. Physics, Conf. Ser., 1080, 012033. DOI: 10.1088/1742-6596/1080/1/011001.10.1088/1742-6596/1080/1/011001 Search in Google Scholar

2. Cristiano, L., 2020: Could ozone be an effective disinfection measure against the novel coronavirus (SARS-CoV-2)? J. Prev. Med. Hyg., 61, 3, E301—E303. DOI: 10.15167/2421-4248/jpmh2020.61.3.1596. Search in Google Scholar

3. Cullen, P. J., Tiwari, B. K., O’Donnell, C. P., Muthukumarappan, K., 2009: Modelling approaches to ozone processing of liquid foods. Trends Food Sci. Technol., 20, 3—4, 125—136. DOI: 10.1016/j.tifs.2009.01.049.10.1016/j.tifs.2009.01.049 Search in Google Scholar

4. Elvis, A. M., Ekta, J. S., 2011: Ozone therapy: A clinical review. J. Nat. Sci. Biol. Med., 2, 1, 66—70. DOI: 10.4103/0976-9668.82319.10.4103/0976-9668.82319 Search in Google Scholar

5. Ersoy, Z. G., Barisci, Z., Dino, O., 2019: Mechanisms of the Escherichia coli and Enterococcus faecalis inactivation by ozone. LWT, 100, 306—313. DOI: 10.1016/j.lwt.2018.10.095.10.1016/j.lwt.2018.10.095 Search in Google Scholar

6. Government Regulation No. 496/2010: Amending and supplementing the Regulation of the SR Government No 354/2006 Coll., laying down requirements for water intended for human consumption and for the quality control of water intended for human consumption. Effective of January 1, 2011. Search in Google Scholar

7. Hoigné, J., 1982: The chemistry of ozone in water. In Rice, R. G., Netzer, A. (Eds): Handbook of Ozone Technology and Application. Ann Arbor Science, Michigan, 341 pp. Search in Google Scholar

8. Hudson, J. B., Sharma, M., Petric, M., 2007: Inactivation of norovirus by ozone gas in conditions relevant to healthcare. J. Hosp. Infect., 66, 1, 40—45. DOI: 10.1016/j.jhin.2006.12.021 PMID:17350729.10.1016/j.jhin.2006.12.021 Search in Google Scholar

9. Khadre, M., Yousef, A. E., Kim, J., 2001: Microbiological aspects of ozone applications in food: A review. J. Food Sci., 66, 9, 1242—1252. DOI: 10.1111/j.1365-2621.2001.tb15196.x.10.1111/j.1365-2621.2001.tb15196.x Search in Google Scholar

10. Knobler, S., Mahmoud, A., Lemon, S., Mack, A., Sivitz, L., Oberholtzer, K., 2004: Learning from SARS: Preparing for the Next Disease Outbreak. National Academies Press, Washington, DC, USA, 376 pp. Search in Google Scholar

11. Manousaridis, G., Nerantzaki, A., Paleologos, E. K., Tsiotsias, A., Savvaidis, I. N., Kontominas, M. G., 2005: Effect of ozone on microbial, chemical and sensory attributes of shucked mussels. Food Microbiol., 22, 1, 1—9. DOI: 10.1016/j. fm.2004.06.003. Search in Google Scholar

12. Martínez-Sánchez, G., 2019: Ozonized water, background, general use in medicine and preclinic support. Ozone Ther. Glob. J., 9, 1, 33—60. Search in Google Scholar

13. Moongilan, D., 2009: Corona and arcing in power and RF devices. In Proceedings of the 2009 IEEE Symposium on Product Compliance Engineering, Toronto, ON, Canada, 1—7.10.1109/PSES.2009.5356021 Search in Google Scholar

14. de Oliveira Souza, S. M., de Alencar, E. R., Ribeiro, J. L., de Aguiar Ferreira, M., 2019: Inactivation of Escherichia coli O157:H7 by ozone in different substrates. Braz. J. Microbiol., 50, 1, 247—253. DOI: 10.1007/s42770-018-0025-2.10.1007/s42770-018-0025-2 Search in Google Scholar

15. Ozone Solutions: http://www.ozonesolutions.com/. Accessed Dec 20, 2019. Search in Google Scholar

16. Peeters, J. E., Mazas, E. A., Masschelein, W. J., de Maturana I., V. M., Debacker, E., 1989: Effect of disinfection of drinking water with ozone or chlorine dioxide on survival of Cryptosporidium parvum oocysts. Appl. Environ. Microbiol., 55, 6, 1519—1522. DOI: 10.1128/aem.55.6.1519-1522.1989.10.1128/aem.55.6.1519-1522.1989 Search in Google Scholar

17. Rennecker, J. L., Marinas, B. J., Owens, J. H., Rice, E. W., 1999: Inactivation of Cryptosporidium parvum oocysts with ozone. Water Res., 33, 11, 2481—2488. DOI: 10.1016/S0043-1354(99)00116-5.10.1016/S0043-1354(99)00116-5 Search in Google Scholar

18. Von Gunten, U., 2003: Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res., 37, 7, 1443—1467. DOI: 10.1016/s0043-1354(02)00457-8,10.1016/S0043-1354(02)00457-8 Search in Google Scholar

19. Von Sonntag, C., von Gutten, U., 2012: Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications. IWA Publishing, London, UK, 306 pp.10.2166/9781780400839 Search in Google Scholar

20. Sasáková, N., Vargová, M., Gregová, G., 2014: Protection of the Environment and Public Health. University of Veterinary Medicine and Pharmacy in Košice, SR, 216 pp. Search in Google Scholar

21. STN EN ISO 10523, 2010: Water quality. Determination of pH. 16 pp. Search in Google Scholar

22. STN EN ISO 9308-1/A1-2017: Water quality. Determination of Escherichia coli and coliform bacteria. 8 pp. Search in Google Scholar

23. Subedi, D. P., Tyata, R. B., Khadgi, A., Wong, C. S., 2012: Physicochemical and microbiological analysis of drinking water treated by using ozone. Sains Malaysiana, 1, 6, 739—745. Search in Google Scholar

24. Szyrkowicz, L., Juzzolino, C., Kaul, S. N., 2001: A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent. Water Res., 35, 9, 21292136. DOI: 10.1016/s0043-1354(00)00487-5.10.1016/S0043-1354(00)00487-5 Search in Google Scholar

25. US EPA Alternative Disinfectants and Oxidants Guidance Manual, 1999: Office of Water (4607), EPA 815-R-99-014, 328 pp. Search in Google Scholar

26. US EPA Wastewater Technology Fact Sheet Ozone Disinfection, 1999: United States Environmental Protection Agency Office of Water, Washington, D.C. EPA 832-F-99-063, 7 pp. Search in Google Scholar

27. US EPA: Water: Monitoring and assessment. 5. 9. Conductivity. https://archive.epa.gov›vms59. Search in Google Scholar

28. Water Treatment Guide—Technical database for water treatment industry: Ozone and water conductivity. Available at http://www.watertreatmentguide.com/. Search in Google Scholar

29. Wen, X., Chen, F., Lin, Y., Zhu, H., Yuan, F., Kuang, D., et al., 2020: Microbial indicators and their use for monitoring drinking water quality—A review. Sustainability, 12, 2249, 1—14. DOI: 10.339/su12062249.10.3390/su12062249 Search in Google Scholar

30. WHO, 2004: Guidelines for Drinking Water Quality. Vol. 1, Recommendations, 3rd edn., 564 pp. Search in Google Scholar

31. Wolf, C., Von Gunten, U., Kohn, T., 2018: Kinetics of inactivation of waterborne enteric viruses by ozone. Environ. Sci. Technol., 52, 2170—2177. DOI: 10.1021/acs.est.7b05111.10.1021/acs.est.7b0511129356522 Search in Google Scholar

32. Woźniak, A., Nowakowicz-Dębek, B., Stępniowska, A., Wlazło, Ł., 2016: Effect of ozonation on microbiological and chemical traits of wheat grain. Plant Soil Environ., 62, 12, 552—557. DOI: 10.17221/655/2015-PS.E Search in Google Scholar

33. Zuma, F., Lin, J., Jonnalagadda, S. B., 2009: Ozone-initiated disinfection kinetics of Escherichia coli in water. J. Envir. Sci. Health, Part A, 44, 1, 48—56. DOI: 10.1080/10934520 802515335. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo