1. bookVolume 64 (2020): Issue 4 (December 2020)
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year
access type Open Access

Efects of Coconut Oil (Cocos nucifera), Avocado Oil (Persea americana), Melon Seed Oil (Citrullus colocynthis L.) on Growth Performance, Blood, Biochemical, Haematological Parameters, and Total Microbial Loads of Noiler Birds

Published Online: 21 Dec 2020
Volume & Issue: Volume 64 (2020) - Issue 4 (December 2020)
Page range: 27 - 36
Received: 24 Apr 2020
Accepted: 14 Sep 2020
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year

This study was carried out to examine the comparative effects of coconut oil (CO), avocado oil (AO), and melon seed oil (MSO) on the growth performance, blood, biochemical, hematological parameters, and total microbial loads of Noiler birds. A total of 120 Noiler birds with an average weight of 50.3 ± 0.13 g were randomized into four treatment groups with 3 replications (10 per pen) for six weeks of fattening. Weekly body weight gain and daily feed intake of the birds were recorded for six weeks, after which average weight gain and feed conversion ratios were calculated. At the end of the feeding trials, blood samples were collected for biochemical and hematological parameter assessments, and the digesta from the colon and ileum were collected for their intestinal total microbial load analysis. The average weight gains and feed conversion ratios (FCR) of the birds supplemented with CO (1229.40 ± 15.00) and MSO (1232.66 ± 43.18) were observed to be significantly higher (P < 0.05), compared to the birds supplemented with AO (1110.73 ± 18.29) and the birds fed feed only (1034.79 ± 2.04) having the least weight gained. The biochemical parameters of the birds across the treatment were not significantly different (P > 0.05). White blood cells, packed cell volume, red blood cells and lymphocytes were significantly higher in the CO group compared to the birds supplemented with the avocado oil and melon seed oil. There was no significant difference (P > 0.05) in the weight of the spleen, bursa and gall bladder among the birds. The Lactobacillus spp. in the colon of birds supplemented with coconut oil (6.43 ± 0.56) and melon oil (6.25 ± 0.65) were significantly higher. It can be concluded that coconut oil and melon seed oil have the potential to serve as growth promoters for chicken production.


1. Akinjayeju, D. O., Adebolu, T. T., 2019: Haematological assessments of Cocos nucifera Linn. water and oil on apparently healthy Wistar albino rats. Asian J. Immun., 2, 1, 1—7. Retrieved from https://www.journalaji.com/index.php/AJI/article/view/30094.Search in Google Scholar

2. AOAC., 2000:Association of Official Analytical Chemists; Official Methods of Analysis. 17th edn., Gaithersburg, MD, 2200 pp.Search in Google Scholar

3. Arunima, S., Rajamohan, T., 2012: Virgin coconut oil improves hepatic lipid metabolism in rats-compared with copra oil, olive oil and sunflower oil. Indian J. Exp. Biol., 50, 802—809.Search in Google Scholar

4. Barghamdi, B., Ghorat, F., Asadollahi, K., Sayehmiri, K., Peyghambari, R., Abangah, G., 2016: Therapeutic effects of Citrullus colocynthis fruit in patients with type II diabetes: A clinical trial study. J. Pharm. Bioallied Sci., 8, 2, 130—134. DOI: 10.4103/0975-7406.171702.10.4103/0975-7406.171702483290327134465Search in Google Scholar

5. Carvajal-Zarrabal, O., Nolasco-Hipolito, C., Aguilar-Uscanga, M., Melo-Santiesteban, G., Hayward-Jones, P., Barradas-Dermitz, D., 2014: Avocado oil supplementation modifies cardiovascular risk profile markers in a rat model of sucrose-induced metabolic changes. Dis. Markers, 11, 386— 425. DOI: 10.1155/2014/386425.10.1155/2014/386425395561924719499Search in Google Scholar

6. Chinwong, S., Chinwong, D., Mangklabruks, A., 2017: Daily consumption of virgin coconut oil increases high-density lipoprotein cholesterol levels in healthy volunteers: A randomized crossover trial. Evid. Based Complementary Altern. Med., Article ID 7251562. 8 pp. DOI: 10.1155/2017/7251562.10.1155/2017/7251562574568029387131Search in Google Scholar

7. Costa, M. C., Bessegatto, J. A., Alfieri, A. A., Weese, J. S., Filho, J. A. B., Oba, A., 2017: Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLOS ONE, 12, 2, e0171642. DOI: 10.1371/journal.pone.0171642.10.1371/journal.pone.0171642531973828222110Search in Google Scholar

8. Cox, L. M., Yamanishi, S., Sohn, J., Alekseyenko, A. V., Leung, J. M., Cho, I., 2014: Altering the intestinal microbiota during a critical developmental window has lasting meta-bolic consequences. Cell, 158, 705—721. DOI: 10.1016/j.cell. 2014.05.052.Search in Google Scholar

9. D’Silva, A., D’Souza, C. J. M., 2015: Effect of non-saponifiable fraction of avocado oil on body weight, body fat and blood lipid profile of broiler chickens. Asian J. Poult. Sci., 9, 144—154. DOI: 10.3923/ajpsaj.2015. in Google Scholar

10. da Silva L. R., Block, J. M., 2019: Coconut oil: what do we really know about it so far ? Food Quality and Safety, 3, 2, 61—72. DOI: 10.1093/fqsafe/fyz004.10.1093/fqsafe/fyz004Search in Google Scholar

11. El-Abasy, M. A., Abdelhady, D. H., Kamel, T., Shukry, M., 2016: Ameliorative effect of coconut oil on hematological, immunological and serum biochemical parameters in experimentally infected rabbits. Alex. J. Vet. Sci., 50, 1, 36—48. DOI: 10.5455/ajvs.229021.10.5455/ajvs.229021Search in Google Scholar

12. Elliott, K. A., Kenny, C., Madan, J. A., 2017:Policy Paper. A Global Treaty to Reduce Antimicrobial use in Livestock. Center for Global Development, Washington, DC, 29 pp. https://www.cgdev.org/sites/default/files/global-treaty-reduce-antimicrobial-use-livestock.pdf.Search in Google Scholar

13. Erhan, M. K., Bolukbasi, S. C., 2017: Citrus peel oils supplementation in broiler diet: Effects on performance, jejunum microflora and jejunum morphology. Rev. Bras. Cienc. Avic., 19 (SPE), 15—2. DOI: 10.1590/1806-9061-2016-0274.10.1590/1806-9061-2016-0274Search in Google Scholar

14. Essien, E. A., Eduok, U. M., 2013: Chemical analysis of Citrullus lanatus seed oil obtained from southern Nigeria elixir. Org. Chem., 54, 12700—12703.Search in Google Scholar

15. Famurewa, A. C., Ejezie, F. E., 2018: Polyphenols isolated from virgin coconut oil attenuate cadmium-induced dyslipidemia and oxidative stress due to their antioxidant properties and potential benefits on cardiovascular risk ratios in rats. Avicenna J. Phytomed., 8, 1, 73—84.Search in Google Scholar

16. Forero-Doria, O., Flores, M., Vergara, C. E., Guzman, L., 2017: Thermal analysis and antioxidant activity of oil extracted from pulp of ripe avocados. J. Therm. Anal. Calorim., 130, 959—966. DOI: 10.1007/s10973-017-6488-9.10.1007/s10973-017-6488-9Search in Google Scholar

17. Flores, M., Saravia, C., Vergara, C. E., Avila, F., Valdés, H., Ortiz-Viedma, J., 2019: Avocado oil: Characteristics, properties, and applications. Molecules (Basel, Switzerland), 24, 11, 2172. DOI: 10.3390/molecules24112172.10.3390/molecules24112172660036031185591Search in Google Scholar

18. Gadde, U., Kim, W. H., Oh, S. T., Lillehoj, H. S., 2017: Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev., 18, 26—45. DOI: 10.1017/S1466252316000207.10.1017/S146625231600020728485263Search in Google Scholar

19. Han, G. G., Kim, E. B., Lee, J., Lee, J. Y., Jin, G., Park, J., 2016: Relationship between the microbiota in different sections of the gastrointestinal tract, and the body weight of broiler chickens. Springerplus, 5, 911. DOI: 10.1186/s40064-016-2604-8.10.1186/s40064-016-2604-8492754927386355Search in Google Scholar

20. Jarret, R. L., Levy, I. J., 2012: Oil and fatty acid content in seed of Citrullus lanatus Schrad. J. Agric. Food Chem., 60, 20, 5199—5204. DOI: 10.1021/jf300046f.10.1021/jf300046f22540530Search in Google Scholar

21. Kapila, N. S., Dissanayake, M. S. D., 2008: Variation of phenolic content in coconut oil extracted by two conventional methods. Int. J. Food Sci. Technol., 43, 597—602.10.1111/j.1365-2621.2006.01493.xSearch in Google Scholar

22. Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A., Kimura, I., 2015: Dietary gut microbial metabolites, short-chain fatty acids and host metabolic regulation. Nutrients, 7, 2839—2849. DOI: 10.3390/nu7042839.10.3390/nu7042839442517625875123Search in Google Scholar

23. Khaw, K. T., Sharp, S. J., Finikarides, L., Afzal, I., Lentjes, M., Luben, R., Forouhi, N. G., 2018: Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women. BMJ open, 8, 3, e020167. DOI: 10.1136/bmjopen-2017-020167.10.1136/bmjopen-2017-020167585520629511019Search in Google Scholar

24. Latshaw, J. D., 2008: Daily energy intake of broiler chickens is altered by proximate nutrient content and form of the diet. Poultry Sci., 87, 1, 89—95. DOI: 10.3382/ps.2007-00173.10.3382/ps.2007-0017318079455Search in Google Scholar

25. Lim, G. B., 2020: Coconut oil raises LDL-cholesterol levels. Nat. Rev. Cardiol., 17, 200. DOI: 10.1038/s41569-020-0345-4.10.1038/s41569-020-0345-432029889Search in Google Scholar

26. Liu, Z. L., Huang, X. F., Luo,Y., Xue, J. J., Wang, Q. G., Wang, Y. M., Wang, C., 2019: Effect of dry and wet feed on growth performance, carcass traits, and apparent nutrient digestibility in geese. J. Appl. Poultry Res., 28, 4, 1115—1120. DOI: 10.3382/japr/pfz074.10.3382/japr/pfz074Search in Google Scholar

27. Müller, C., Jenni-Eiermann, S., Jenni, L., 2011: Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Funct. Ecol., 25, 566—576. DOI: 10.1111/j.1365-2435.2010.01816.x.10.1111/j.1365-2435.2010.01816.xSearch in Google Scholar

28. Murray, R. K., Rodwell, V. W., Bender, D., Botham, K. M., Weil, P. A., Kennelly, P. J., 2009:Harper’s Illustrated Biochemistry. 28th edn., New York, McGraw-Hill Medical, 704 pp.Search in Google Scholar

29. Muralidharan, J., Galiè, S., Hernández-Alonso, P., Bulló, M., Salas-Salvadó, J., 2019: Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation. Front. Nutr., 6, 157. DOI: 10.3389/fnut.2019.00157.10.3389/fnut.2019.00157679794831681786Search in Google Scholar

30. Nandakumaran, M., Angelaki, E., Al-Azemi, N., Al-Sarraf, H., Al-Saleh, E., 2011: Influence of coconut oil administration on some hematologic and metabolic parameters in pregnant rats. J. Matern. Fetal Neonatal Med., 24, 10, 1254—258. DOI: 10.3109/14767058.2011.572308.10.3109/14767058.2011.57230821736409Search in Google Scholar

31. Nevin, K. G., Rajamohan, T., 2004: Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clin. Biochem., 37, 830—835. DOI: 10.1016/j.clinbiochem.2004. in Google Scholar

32. Nwangwa, E. K., Chukwuemeka, P. A., 2011: Regenerative effects of coconut water and coconut milk on the pancreatic B-cells and Cyto-architecture in alloxan induced diabetic Wistar albino rats. Am. J. Trop. Med. Publ. Health, 1, 3, 137—146.Search in Google Scholar

33. Oluba, O. M., Eidangbe, G. O., Ojieh, G. C., Idonije, B. O., 2011: Palm and egusi melon oils lower serum and liver lipid profile and improve antioxidant activity in rats fed high fat diet. Int. J. Med. Med. Sci., 3, 2, 47—51.Search in Google Scholar

34. Oluba, O., Adeyemi O., Ojieh, G., Isiosio, I., 2007: Fatty acid composition of Citrullus lanatus (egusi melon) oil and its effect on serum lipids and some serum enzymes. Internet J. Cardiovasc. Res., 5, 2, 1—7.10.5580/14d0Search in Google Scholar

35. Olushola-Siedoks, A. A., Igbo, U. E., Asieba, G. O., Ojo, B. I., Akinola, T. O., Igwe, C. C., 2019: Preliminary investigations on the health benefits of Citrullus colocynthis (L.) Schrad seeds. Europ. J. Nutr. Food Saf., 10, 3, 187—198. DOI: 10.9734/ejnfs/2019/v10i330112.10.9734/ejnfs/2019/v10i330112Search in Google Scholar

36. Olutiola, P. O., Famurewa, O., Sontag, H. G., 2000:An Introduction to General Microbiology (A Practical Approach). Measurement of Microbial Growth. 2nd edn., Heideberger Verlagsanstait and Druckerei Gmb. Heldelberg, 101—111.Search in Google Scholar

37. Oyebanji, B. O., Oyewumi, O. C., Fadopemu, O. C., 2018: Effect of turmeric rhizome (Curcuma longa) powder and coconut oil mixture on growth performance, haematological and biochemical parameters of Noiler birds. JASVM, 3, 4, 118—124. DOI: 10.31248/JASVM2018.103.10.31248/JASVM2018.103Search in Google Scholar

38. Poorghasemi, M., Seidavi, A., Qotbi, A. A., Laudadio, V., Tufarelli, V., 2013: Influence of dietary fat source on growth performance responses and carcass traits of broiler chicks. Asian Austral. J. Anim., 26, 5, 705—710. DOI: 10.5713/ajas. 2012.12633.Search in Google Scholar

39. Sabiri, M., El Amrani, K., Bouzekri, O., Amechrouq, A., El idrissi, M., 2019: Fatty acid and sterol constituents of Citrullus colocynthis (L.) Schard seed oil. RHAZES: Green and Applied Chemistry, 7, 57—60.Search in Google Scholar

40. Santana, H., Trindade, F. R., Silva, A., Militao, J., Facundo, V., 2015: Essential oils of leaves of Piper species display larvicidal activity against the dengue vector, Aedes aegypti (Diptera culicidae). Rev. Bras. Plantas Med., 17, 105—111. DOI: 10.1590/1983-084X/13_052.10.1590/1983-084X/13_052Search in Google Scholar

41. Schönfeld, P., Wojtczak, L., 2016: Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J. Lipid Res., 57, 6, 943—954. DOI: 10.1194/jlrR067629.Search in Google Scholar

42. Schmidt, E., Schmidt, F. W., 1963: Das Verteilungs-Mus-ter einiger Enzyme in der menschlichen Leber und seine Veränderungen unter der Zell-Schädigung. Enzymol. Biol. Clin., 3, 73—79. DOI: 10.1159/000458045.10.1159/000458045Search in Google Scholar

43. Tan, C., Tan, S., Tan, S., 2017: Influence of geographical origins on the physicochemical properties of Hass avocado oil. J. Am. Oil Chem. Soc., 94, 1431—1437. DOI: 10.1007/s11746-017-3042-7.10.1007/s11746-017-3042-7Search in Google Scholar

44. Tarhyel, R., Tanimomo, B. K., Hena, S. A., 2012: Effect of sex, colour and weight group on carcass characterization on Japanese quail. Sci. J. Anim. Sci., 1, 1, 22—27. DOI: 10.14196/SJAS.V1I1.79Search in Google Scholar

45. Toghyani, M., Toghyani, M., Gheisari, A., Ghalamkari, G., Eghbalsaied, S., 2011: Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broilers chicks. Livestock Sci., 38, 167—173.10.1016/j.livsci.2010.12.018Search in Google Scholar

46. Tuleun, C. D., Igba, F., 2007: Growth and carcass characteristics of broiler chickens fed soaked and cooked velvet bean (Mucuna utilis) meal. In Proceedings of the 32nd Annual Conference of Nigerian Society for Animal Production: Sustainability of the Livestock Industry in an Oil Economy, Calabar, Nigeria, March 18—21, 240—243.Search in Google Scholar

47. Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., et al., 2015: Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA, 112, 5649—5654. DOI: 10.1073/pnas.1503141112.10.1073/pnas.1503141112442647025792457Search in Google Scholar

48. World Health Organization (WHO), 2020:Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2020. World Health Organization, 132 pp. https://apps.who.int/iris/handle/10665/332081.Search in Google Scholar

49. Yang, X., Hongliang, X., Xiaojun, Y., 2018: Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Anim. Nutr., 4, 4, 388—393. DOI: 10.1016/j.aninu.2018. in Google Scholar

50. Zhao, R., Sun, J., Mo, H., Zhu, Y., 2007: Analysis of functional properties of Lactobacillus acidophilus. World J. Microb. Biot., 23, 2, 195—200. DOI: 10.1007/s11274-006-9209-2.10.1007/s11274-006-9209-2Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo