1. bookVolume 64 (2020): Issue 4 (December 2020)
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year
Open Access

Anaplasmosis in Animals

Published Online: 21 Dec 2020
Volume & Issue: Volume 64 (2020) - Issue 4 (December 2020)
Page range: 17 - 26
Received: 23 Jul 2020
Accepted: 14 Sep 2020
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year

Anaplasmosis is a vector-borne, infectious and non-contagious disease. The disease is caused by various pathogens of the genus Anaplasma. The different species cause different types of anaplasmosis depending on which cells that are infected in the mammalian host. Anaplasmosis has a wide host range, including humans, and it is distributed worldwide. The zoonotic potential of some species is of great importance in regards to public health concerns. This review presents information about anaplasmosis in animals and its prevalence in Europe, and other countries in the world.


1. Aiello, S. E., Moses, M. A., 2017:The Merck Veterinary Manual. 11th edn., Merck and Co., Inc., Kenilworth, NJ, 3326 pp.Search in Google Scholar

2. Aktas, M., Özübek, S., 2017: Outbreak of anaplasmosis associated with novel genetic variants of Anaplasma marginale in dairy cattle. Comp. Immunol. Microbiol. Inf. Dis., 54, 20—26. DOI: 10.1016/j.cimid.2017. in Google Scholar

3. Alberti, A., Zobba, R., Chessa, B., Addis, M. F., Sparagano, O., Parpaglia, M. L. P., et al., 2005: Equine and canine Anaplasma phagocytophilum strains isolated on the island of Sardinia (Italy) are phylogenetically related to pathogenic strains from the United States. Appl. Envir. Microbiol., 71, 10, 6418—6422. DOI: 10.1128/AEM.71.10.6418-6422.2005.10.1128/AEM.71.10.6418-6422.2005126591716204571Search in Google Scholar

4. Ammustagui, I., Sainz, Á., Tesouro, M. Á., 2006: Serological evaluation of Anaplasma phagocytophilum infection in livestock in Northwestern Spain. Ann. New York Acad. Sci., 1078, 487—490. DOI: 10.1196/annals.1374.091.10.1196/annals.1374.09117114760Search in Google Scholar

5. Battilani, M., Arcangeli, S. D., Balboni, A., Dondi, F., 2017: Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol., 49, 195—211. DOI: 10.1016/j.meegid.2017. in Google Scholar

6. Baumgartner, W., Schlerka, G., Fumicz, M., Stöger, J., Awad-Masalmeh, M., Schuller, W., et al., 1992: Seroprevalence survey for Anaplasma marginale—infection of Austrian cattle. J. Vet. Med., Series B, 39, 97—104. DOI: 10.1111/j.1439-0450.1992.tb01143.x.10.1111/j.1439-0450.1992.tb01143.x1621479Search in Google Scholar

7. Belkahia, H., Said, M. B., Alberti, A., Abdi, K., Issaoui, Z., Hattab, D., et al., 2015: First molecular survey and novel genetic variants’ identification of Anaplasma marginale, A. centrale and A. bovis in cattle from Tunisia. Infect. Genet. Evol., 34, 361—371. DOI: 10.1016/j.meegid.2015. in Google Scholar

8. Ben Said, M., Belkahia, H., Messadi, L., 2018:Anaplasma spp. in North Africa: A review on molecular epidemiology, associated risk factors and genetic characteristics. Ticks and Tick­Borne Dis., 9, 3, 543‒—555. DOI: 10.1016/j.ttbdis. 2018.01.003.Search in Google Scholar

9. CDC, 2019:Anaplasmosis: Epidemiology and Statistics. Retrieved March 29, 2019, from Centers of Disease Control and Prevention: https://www.cdc.gov/anaplasmosis/stats/index.html.Search in Google Scholar

10. Chae, J. S., Heo, E. J., Park, J. H., Choi, K. S., Dumler, J. S., Lee, S. S., et al., 2009: Detection of antibodies reacting with Anaplasma phagocytophilum and Ehrlichia chaffeensis from cats, horses and cattle in Korea. J. Vet. Clin., 26, 6, 515—519. DOI: 10.3347/kjp.2018.56.3.28710.3347/kjp.2018.56.3.287604655629996633Search in Google Scholar

11. Chilton, N. B., Dergousoff S. J., Lysyk, T. J., 2018: Prevalence of Anaplasma bovis in Canadian population of the Rocky Mountain wood tick, Dermacentor andersoni. Ticks and Tick­Borne Dis., 9, 6, 1528—1531. DOI: 10.1016/j.ttbdis. 2018.07.003.Search in Google Scholar

12. Cui, Y., Yan, Y., Wang, X., Cao, S., Zhang, Y., Jian, F., et al., 2017: First molecular evidence of mixed infections of Anaplasma species in dogs in Henan, China. Ticks and Tick­ Borne Dis., 8, 2, 283—289. DOI: 10.1016/j.ttbdis.2016. in Google Scholar

13. Dahmani, M., Marié, J., Scandola, P., Brah, S., Davoust, B., Mediannikov, O., 2017:Anaplasma ovis infects sheep in Niger. Small Rumin. Res., 151, 32—35. DOI: 10.1016/j.small-rumres.2017.04.012.Search in Google Scholar

14. Derdáková, M., Štefančíková, A., Špitalská, E., Tarageľová, V., Košťálová, T., Hrkľová, G., et al., 2011: Emergence and genetic variability of Anaplasma species in small ruminants and ticks from Central Europe. Vet. Microbiol., 153, 293—298. DOI: 10.1016/j.vetmic.2011. in Google Scholar

15. Dewage, B. G., Little, S., Payton, M., Beall, M., Braff, J., Szlosek, D., et al., 2019: Trends in canine seroprevalence to Borrelia burgdorferi and Anaplasma spp. in the eastern USA, 2010‒2017. Parasit. Vectors, 12, 1, 476. DOI: 10.1186/s13071-019-3735-x.10.1186/s13071-019-3735-x679101131610803Search in Google Scholar

16. dos Santos, T. M., Roier, E. C. R., Pires, M. S., Santos, H. A., Vilela, J. A. R., Peckle, M., et al., 2019: Molecular evidence of Anaplasma phagocytophilum and Theileria equi coinfection in horses from Rio de Janeiro, Brazil. Vet. Anim. Sci., 7, 1—5. DOI: 10.1016/j.vas.2019.100055.10.1016/j.vas.2019.100055738665132734076Search in Google Scholar

17. Dumler, J. S., Barbet, A. F., Bekker, C. P., Dasch, G. A., Palmer, G. H., Ray, S. C., et al. 2001: Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia equi with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, description of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Micro­biol., 51, 6, 2145—2165. DOI: 10.1099/00207713-51-6-2145.10.1099/00207713-51-6-214511760958Search in Google Scholar

18. Dziegel, B., Adaszek, L., Kalinowski, M., Winiarczyk, S., 2013: Equine granulocytic anaplasmosis. Res. Vet. Sci., 95, 2, 316—320. DOI: 10.1016/j.rvsc.2013. in Google Scholar

19. Ebani, V., Cerri, D., Fratini, F., Ampola, M., Andreani, E., 2008: Seroprevalence of Anaplasma phagocytophilum in domestic and wild animals from central Italy. New Microbiol., 31, 371—375.Search in Google Scholar

20. Ebani, V. V., Nardoni, S., Bertelloni, F., Rocchigiani, G., Mancianti F., 2015: Tick-borne infections in horses from Tuscany, Italy. J. Equine Vet. Sci., 35, 4, 290—294. DOI: 10.1016/j.jevs.2015. in Google Scholar

21. Ebani, V. V., 2019: Serological evidence of Anaplasma phagocytophilum and spotted fever group Rickettsia spp. exposure in horses from Central Italy. Pathogens, 8, 88, 1—8. DOI: 10. 3390/pathogens8030088.10.3390/pathogens8030088678976131247976Search in Google Scholar

22. Enkhataivan, B., Narantsatsral, S., Davaasuren, B., Otgonsuren, D., Amgalanbaatar, T., Uuganbayar E., et al., 2019: Molecular detection of Anaplasma ovis in small ruminants and ixodid ticks from Mongolia. Parasitol. Int., 69, 47—53. DOI: 10.1016/j.parint.2018. in Google Scholar

23. Farkas, R., Gyurkovsky, M., Lukács, Z., Aladics, B., Solymosi, N., 2014: Seroprevalence of some vector-borne infections of dogs in Hungary. Vector Borne Zoonotic Dis., 14, 4, 256—260. DOI: 10.1089/vbz.2013.1469.10.1089/vbz.2013.1469399303424689833Search in Google Scholar

24. Flåttsenteret, 2019:Anaplasmose—Veileder for Helsepersonell. Retrieved March 28, 2019, from Norwegian National Centre for Tick-borne Diseases: https://xn-flttsenteret-ucb.no/sykdommer-og-symptomer/sykdommer/anaplasmose/.Search in Google Scholar

25. Foley, J. E., Nieto, C. N., Adjemian, J., Dabritz, H., Brown, R. N., 2008:Anaplasma phagocytophilum infection in small mammal hosts of Ixodes ticks, western United States. Emerg. Infect. Dis., 14, 7, 1147—1150. DOI:10.3201/eid1407.071599.10.3201/eid1407.071599260035918598645Search in Google Scholar

26. Fourie, J. J., Evans, A., Labuschagne, M., Crafford, D., Madder, M., Pollmeier, M., et al., 2019: Transmission of Anaplasma phagocytophilum (Foggie, 1949) by Ixodes ricinus (Linnaeus, 1758) ticks feeding on dogs and artificial membranes. Parasit. Vectors, 12, 136. DOI: 10.1186/s13071-019-3396-9.10.1186/s13071-019-3396-9643488130909972Search in Google Scholar

27. Galemore, E. R., Labato, M. A., O’Neil, E., 2018: Prevalence of Anaplasma phagocytophilum infection in feral cats in Massachusetts. J. Feline Med. Surg. Open Rep., 1—6, 4, 1. DOI: 10.1177/2055116917753804.10.1177/2055116917753804578810229399369Search in Google Scholar

28. Gofton, A. W., Waudby, H. P., Petit, S., Greay, T. L., Ryan, U. M., Irwin, P. J., 2017: Detection and phylogenetic characterization of novel Anaplasma and Erlichia species in Amblyomma triguttatum subsp. from four allopatric populations in Australia. Ticks and Tick­Borne Dis., 8, 5, 749—756. DOI: 10.1016/j.ttbdis.2017. in Google Scholar

29. Grandi, G., Aspán, A., Pihl, J., Gustafsson, K., Engström, F., Jinnerot, T., et al., 2018: Detection of tick-borne pathogens in lambs undergoing prophylactic treatment against ticks on two Swedish farms. Front. Vet. Sci., 5, 73, 1—6. DOI: 10.3389/fvets.2018.00072.10.3389/fvets.2018.00072Search in Google Scholar

30. Greene, C. E., 2012:Infectious Diseases of the Dog and Cat. 4th edn., Elsevier Inc., St. Louis, MO, 1345 pp.Search in Google Scholar

31. Henningsson, A. J., Hvidsten, D., Kristiansen, B., Matussek, A., Stuen, S., Jenkins, A., 2015: Detection of Anaplasma phagocytophilum in Ixodes ricinus ticks from Norway using a real-time PCR assay targeting the Anaplasma citrate synthase gene gltA. BMC Microbiol., 15, 153, 1—6. DOI: 10.1186/st2866-015-0486-5.Search in Google Scholar

32. Hornok, S., Sugár, L., de Mera, I. G. F., de la Fuente, J., Horváth, G., Kovács, T., et al., 2018: Tick- and fly-borne bacteria in ungulates: the prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. BMC Vet. Res., 14, 98. DOI: 10.1186/s12917-018-1403-6.10.1186/s12917-018-1403-6Search in Google Scholar

33. Hulínska, D., Langrová, K., Pejčoch, M., Pavlásek, I., 2004: Detection of Anaplasma phagocytophilum in animals by real-time polymerase chain reaction. APMIS, 112, 4—5. DOI: 10.1111/j.1600-0463.2004.apm11204-0503.x.10.1111/j.1600-0463.2004.apm11204-0503.xSearch in Google Scholar

34. Jahfari, S., Coipan, E. C., Fonville, M., van Leeuwen, A. D., Hengeveld, P., Heylen, D., et al., 2014: Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit. Vectors, 7, 365, 1—11. DOI: 10.1186/1756-3305-7-365.10.1186/1756-3305-7-365Search in Google Scholar

35. Jensen, J., Simon, D., Escobar, H. M., Soller, J. T., Bullerdiek, J., Beelitz, P., et al., 2007:Anaplasma phagocytophilum in dogs in Germany. Zoonoses and Public Health, 54, 94—101. DOI: 10.1111/j.1863-2378.2007.01028.x.10.1111/j.1863-2378.2007.01028.xSearch in Google Scholar

36. Kocan, K. M., de la Fuente, J., Guglielmone, A. A., Meléndez, R. D., 2003: Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clin. Microbiol. Rev., 16, 4, 698—712. DOI: 10.1128/CMR.16.4.698-712.200310.1128/CMR.16.4.698-712.2003Search in Google Scholar

37. Kocan, K. M., de la Fuente, J., Blouin, E. F., Coetzee, J. F., Ewing, S. A., 2010: The natural history of Anaplasma marginale. Vet. Parasitol., 167, 2—4, 95—107. DOI: 10.1016/j. vetpar.2009.09.012.Search in Google Scholar

38. Kohn, B., Silaghi, C., Galke, D., Arndt, G., Pfister, K., 2011: Infections with Anaplasma phagocytophilum in dogs in Germany. Res. Vet. Sci., 91, 1, 71—76. DOI: s10.1016/j.rvsc. 2010. in Google Scholar

39. Li, H., Zheng, Y. C., Ma, L., Jia, N., Jiang, B. G., Jiang, R. R., et al., 2015: Human infection with a novel tick-borne Ana­plasma species in China: a surveillance study. Lancet Infect. Dis., 15, 6, 663670. DOI: 10.1016/S1473-3099(15)70051-4.10.1016/S1473-3099(15)70051-4Search in Google Scholar

40. Mattilsynet, 2018: Forsøksdyr: Persistens—overføring av A. phago cytophilum-smitte mellom flått og sau. Retrieved March 28, 2019, from The Norwegian Food Safety Authority: https://www.mattilsynet.no/dyr_og_dyrehold/dyrevelferd/forsoksdyr/forsoksdyrsoknader/persistens__overforing_av_a_phagocytophilumsmitte_mellom_flaatt_og_sau.32342.Search in Google Scholar

41. Mattilsynet, 2019: Vedlegg. C-sjukdommer. Retrieved March 28, 2019, from The Norwegian Food Safety Authority: https://www.mattilsynet.no/dyr_og_dyrehold/dyrehelse/dyresykdommer/csykdommer.5498/binary/C-sykdommer.Search in Google Scholar

42. M’ghirbi, Y., Bèji, M., Oporto, B., Khrouf F., Hurtdao, A., Bouattour, A., 2016:Anaplasma marginale and A. phagocytophilum in cattle in Tunisia. Parasit. Vectors., 9, 1, 18. DOI: 10.1186/s13071-016-1840-7.10.1186/s13071-016-1840-7507233527765073Search in Google Scholar

43. Milner, J. M., van Beest, F. M., 2013: Ecological correlates of a tick-borne disease, Anaplasma phagocytophilum, in moose in southern Norway. Eur. J. Wildl. Res., 59, 3, 399406. DOI: 10.1007/s10344-012-0685-4.10.1007/s10344-012-0685-4Search in Google Scholar

44. Movilla, R., García, C., Siebert, S., Roura, X., 2016: Countrywide serological evaluation of canine prevalence for Anaplasma spp., Borrelia burgdorferi (sensu lato), Dirofilaria immitis and Erlichia canis in Mexico. Parasit. Vectors., 9, 421. DOI: 10.1186/s13071-016-1685-z.Search in Google Scholar

45. Mullen, G. R., Durden., L. A., 2017:Medical and Veterinary Entomology. 3rd edn., Elsevier Inc., London, 769 pp.Search in Google Scholar

46. Noaman, V., Shayan, P., 2010: Molecular detection of Anaplasma bovis in cattle from Central part of Iran. Vet. Res. Forum, 1, 2, 117—122.Search in Google Scholar

47. Nogueira, R. M. S., Silva, A. B., Sato, T. P., de Sá, J. C., dos Santos, A. C. G., Filho, E. F. A., et al., 2017: Molecular and serological detection of Theileria equi, Babesia caballi and Anaplasma phagocytophilum in horses and ticks in Maranhão, Brazil. Pesqui. Vet. Bras., 37, 12, 1416—1422. DOI: 10.1590/S0100-736X2017001200010.10.1590/s0100-736x2017001200010Search in Google Scholar

48. Ojeda-Chi, M. M., Rodriguez-Vivas, R. I., Esteve-Gasent, M. D., León, A. P., Modarelli, J. J., Villegas-Perez, S., 2019: Molecular detection of rickettsial tick-borne agents in white-tailed deer (Odocoileus virginianus yucatanensis), Mazama deer (Mazama temama), and the ticks they host in Yucatan Mexico. Ticks and Tick­Borne Dis., 10, 2, 365—370. DOI: 10.1016/j.ttbdis.2018. in Google Scholar

49. Ola-Fadunsin, S. D., Gimba, F. I., Abdullah, D. A., Sharma, R. S. K., Abdullah, F. J. F., Sani, R. A., 2018: Epidemiology and risk factors associated with Anaplasma marginale infection of cattle in Peninsular, Malaysia. Parasitol. Int., 67, 6, 659—665. DOI: 10.1016/j.parint.2018. in Google Scholar

50. Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., et al. 2015: Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Phil. Trans. R. Soc. Lond. B Biol. Sci., 370, 1—17. DOI: 10.1098/rstb.2013.0551.10.1098/rstb.2013.0551434295725688012Search in Google Scholar

51. Passamonti, F., Veronesi, F., Cappelli, K., Capomaccio, S., Coppola, G., Marenzoni, M. L., et al., 2010:Anaplasma phagocytophilum in horses and ticks: A preliminary survey of Central Italy. Comp. Immunol. Microbiol. Infect. Dis., 33, 1, 73—83. DOI: 10.1016/j.cimid.2008. in Google Scholar

52. Peng, Y., Wang, K., Zhao, S., Yan, Y., Wang, H., Jing, J., et al., 2018: Detection and phylogenetic characterization of Anaplasma capra: An emerging pathogen in sheep and goats in China. Front. Cell. Infect. Microbiol., 8, 283, 1—7. DOI: 10.3389/fcimb.2018.00283.10.3389/fcimb.2018.00283612642630214896Search in Google Scholar

53. Praskova, I., Bezdekova, B., Zeman, P., Jahn, P., 2011: Seroprevalence of Anaplasma phagocytophilum in horses in the Czech Republic. Ticks and Tick­Borne Dis., 2, 111—115. DOI: 10.1016/j.ttbdis.2011. in Google Scholar

54. Razanske, I., Rosef, O., Radzijevskaja, J., Bratchikov, M., Griciuviene, L., Paulauskas, A., 2019: Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. in red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in Southern Norway. Int. J. Parasitol., 8, 127—134. DOI: 10.1016/j.ijppaw.2019. in Google Scholar

55. Rolim, M. F., Oliveira, F. C. R., Graca, F. A. S., Brasil, F. C., 2015: Serological evidence of exposure to Anaplasma phagocytophilum in horses from the Rio de Janeiro State Mounted Police bred in the urban zone. Ciênc. Anim. Bras., 16, 3, 377—387. DOI: 10.1590/1089-6891v16i319865.10.1590/1089-6891v16i319865Search in Google Scholar

56. Salvagni, C. A., Dagnone, A. S., Gomes, T. S., Mota, J. S., Andrade, G. M., Baldani, C. D., et al., 2009: Serologic evidence of equine granulocytic anaplasmosis in horses from central West Brazil. Rev. Bras. Parasitol. Vet., 19, 3, 135—140. DOI: 10.1590/S1984-29612010000300002.10.1590/S1984-2961201000030000220943015Search in Google Scholar

57. Schvartz, G., Epp, T., Burgess, H. J., Chilton, N. B., Pearl, D. L., Lohmann, K. L., 2015: Seroprevalence of equine granulocytic anaplasmosis and Lyme borreliosis in Canada as determined by a point-of-care enzyme-linked immunosorbent assay (ELISA). Can. Vet. J., 56, 575—580.Search in Google Scholar

58. Sellon, D. C., Long, M. T., 2014:Equine Infectious Diseases. Elsevier Inc., St. Louis, MO, 650 pp.Search in Google Scholar

59. Seo, M., Ouh, I. O., Lee, H., Geraldino, P. J. L., Rhee, M. H., Kwon, O. D., et al., 2018: Differential identification of Ana­plasma in cattle and potential of cattle to serve as reservoir of Anaplasma capra, an emerging tick-borne zoonotic pathogen. Vet. Microbiol., 226, 15—22. DOI: 10.1016/j.vetmic. 2018.10.008.Search in Google Scholar

60. Slivinska, K., Víchová, B., Werszko, J., Szewczyk, T., Wróblewski, Z., Peťko, B., et al., 2016: Molecular surveillance of Theileria equi and Anaplasma phagocytophilum infections in horses from Ukraine, Poland and Slovakia. Vet. Parasitol., 2015, 35—37. DOI: 10.1016/j.vetpar.2015. in Google Scholar

61. Springer, A., Montenegro, V. M., Schicht, S., Pantchev, N., Strube, C., 2018: Seroprevalence and current infections of canine vector-borne diseases in Nicaragua. Parasit. Vectors, 11, 585. DOI: 10.1186/s13071-018-3173-1.10.1186/s13071-018-3173-1623356630419951Search in Google Scholar

62. Stigum, V. M., Jaarsma, R. I., Sprong, H., Rolandsen, C. M., Mysterud, A., 2019: Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces, red deer Cervus elaphus, roe deer Capreolus and Ixodes ricinus ticks from Norway. Parasit. Vectors, 1, 12, 1—8. DOI: 10.1186/s13071-018-3256-z.10.1186/s13071-018-3256-z631892930606222Search in Google Scholar

63. Stuen, S., Bergström, K. 2008: Human anaplasmose—en skjult sykdom i Norge ? Tidskr. Nor. Legeforen., 128, 22, 2579—2581.Search in Google Scholar

64. Sykes, J. E., 2014:Canine and Feline Infectious Diseases. Elsevier Inc., St Louis, MO, 915 pp.Search in Google Scholar

65. Theiler, Sir A., 1911: Further investigation into Anaplasmosis of South African cattle. 1st Report of the Director of Veterinary Research, 746.Search in Google Scholar

66. Uminski, K., Kadkhoda, K., Houston, B. L., Lopez, A., MacKenzie, L. J., Lindsay, R., et al., 2018: Anaplasmosis: An emerging tick-borne disease of importance in Canada. IDCases, 14, 14, e00472. DOI: 10.1016/j.idcr.2018.e00472.10.1016/j.idcr.2018.e00472627866730524954Search in Google Scholar

67. van der Kolk, J. H., Veldhuis Kroeze, E. J. B., 2013:Infectious Diseases of the Horse. Manson Publishing Ltd., London, 336 pp.10.1201/b15976Search in Google Scholar

68. Villeneuve, A., Goring, J., Marcotte, L., Overvelde, S., 2011: Seroprevalence of Borrelia burgdorferi, Anaplasma phagocytophilum, Ehrlichia canis, and Dirofilaria immitis among dogs in Canada. Can. Vet. J., 52, 5, 527530.Search in Google Scholar

69. Yabsley, M. J., Romines, J., Nettles, V. F., 2006: Detection of Babesia and Anaplasma species in rabbits from Texas and Georgia, USA. Vector Borne Zoonotic Dis., 6, 1, 713. DOI: 10.1089/vbz.2006. in Google Scholar

70. Yang, J., Liu, Z., Guan, G., Liu, Q., Li, Y., Chen, Z., et al., 2013: Prevalence of Anaplasma phagocytophilum in ruminants, rodents and ticks in Gansu, north-western China. J. Med. Microbiol., 62, 254258. DOI: 10.1099/jmm.0.046771-0.10.1099/jmm.0.046771-023105025Search in Google Scholar

71. Yang, J., Han, R., Niu, Q., Liu, Z., Guan, G., Liu, G., et al., 2018: Occurrence of four Anaplasma species with veterinary and public health significance in sheep, northwestern China. Ticks and Tick­Borne Dis., 9, 1, 8285. DOI: 10.1016/j.ttbdis.2017. in Google Scholar

72. Yousefi, A., Rahbari, S., Shayan, P., Sadeghi-dehkordi, Z., Bahonar, A., 2017: Molecular detection of Anaplasma marginale and Anaplasma ovis in sheep and goat in west highland pasture of Iran. Asian Pac. J. Trop. Biomed., 7, 5, 455459. DOI: 10.1016/j.apjtb.2017. in Google Scholar

73. Zhou, M., Cao, S., Sevinc, F., Sevinc, M., Ceylan, O., Ekici, S., et al., 2017: Molecular detection and genetic characterization of Babesia, Theileria and Anaplasma amongst apparently healthy sheep and goats in the central region of Turkey. Ticks and Tick­Borne Dis., 8, 2, 246252. DOI: 10.1016/j.ttbdis. 2016.11.006.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo