1. bookVolume 63 (2019): Issue 4 (December 2019)
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year
Open Access

Optimal Criteria for the Selection of Probiotics, Based on their Mode of Action

Published Online: 21 Dec 2019
Volume & Issue: Volume 63 (2019) - Issue 4 (December 2019)
Page range: 60 - 69
Received: 27 Aug 2019
Accepted: 14 Oct 2019
Journal Details
First Published
30 Mar 2016
Publication timeframe
4 times per year

The objective of this review was to discuss some of the criteria which influence the selection of microorganisms with probiotic properties based on their mode of action. The most common bacteria that belong to the “group” probiotics are the Lactobacillus and Bifidobacterium species/strains. Probiotics have benefits and effects by their mechanism of action in different axial locations such as: producing substances, influencing immune function and response, modification as well as maintenance of a healthy population of microorganisms in the intestinal environment. Probiotics have demonstrated significant potential as therapeutic options for a variety of diseases Potential peripheral pathways that link probiotic ingestion in the brain function are focused on the role of the vagal afferent nerve signalling and changes in the cerebral levels of neuromodulators. The application of probiotic microorganisms represents a way to effectively influence the composition of the intestinal microbiome and the immune system of the host, as well as they can be considered as a suitable alternative to influence a healthy quality of life.


1. Abreu, M. T., 2010: Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat. Rev. Immunol., 10, 131—144. DOI: 10.1038/nri2707.10.1038/nri270720098461Search in Google Scholar

2. Abriouel, H., Muñoz, M. C. C., Lerma, L. L., Montoro, B. P., Bockelmann. W., Pichner, R., et al., 2015: New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int., 78, 465—481. DOI: 10.1016/j.foodres.2015. DOISearch in Google Scholar

3. Belkaid, Y., Naik, S., 2013: Compartmentalized and systemic control of tissue immunity by commensals. Nat. Immunol., 14, 646—653. DOI: 10.1038/ni.2604.10.1038/ni.2604384500523778791Open DOISearch in Google Scholar

4. Bercik, P., Verdu, E. F., Foster, J. A., Macri, J., Potter, M., Huang, X., et al., 2010: Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 139, 2102— 2112. DOI: 10.1053/j.gastro.2010. DOISearch in Google Scholar

5. Bermudez-Brito, M., Plaza-Diaz, J., Muňoz-Quezdala, S., Gómez-llorente, C., Gil, A., 2012: Probiotic mechanisms of action. Ann. Nutr. Metab., 61, 160—174. DOI: 10.1159/000342079.10.1159/00034207923037511Open DOISearch in Google Scholar

6. Bobíková, K., Revajová, V., Karaffová, V., Levkutová, M., Levkut, M., 2015: IgA gene expression and quantification of cecal IgA+, IgM+, and CD4+ cells in chickens treated with EFAL41 and infected with Salmonella Enteritidis. Acta Histochem., 117, 629—634. DOI: 10.1016/j.acthis.2015. DOISearch in Google Scholar

7. Campos, C. A., Gerschenson, L. N., Flores, S. K., 2011: Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technol., 4, 849—875. DOI: 10.1007/s11947-010-0434-1.10.1007/s11947-010-0434-1Open DOISearch in Google Scholar

8. Capuron, L., Miller, A. H., 2011: Immune system to brain signaling: neuropsychopharmacological implications. Pharmacology and Therapeutics, 130, 226—238. DOI: 10.1016/j.pharmthera.2011. in Google Scholar

9. Clifford, A., 2010: The probiotic paradox: live and dead cells are biological response modifiers. Nutr. Res. Rev., 23, 1, 37—46. DOI: 10.1017/S0954422410000090.10.1017/S095442241000009020403231Open DOISearch in Google Scholar

10. Corthésy, B., 2009: Secretory immunoglobulin A: well beyond immune exclusion at mucosal surfaces. Immunopharm. Immunotoxicol., 31, 2, 174—179. DOI: 10.1080/08923970802438441.10.1080/0892397080243844119514992Search in Google Scholar

11. Corthésy, B., 2013: Multi-faceted functions of secretory IgA at mucosal surfaces. Front. Immunol., 4, 185, 1—11. DOI: 10. 3389/fimmu.2013.00185.10.3389/fimmu.2013.00185370941223874333Open DOISearch in Google Scholar

12. Das, A., Ray, S., Raychaudhuri, U., Chakraborty, R., 2014: Microencapsulation of probiotic bacteria and its potential application in food technology. Int. J. Agric. Environ. Biotechnol., 6, 1, 63—69. DOI: 10.5958/j.2230-732X. DOISearch in Google Scholar

13. Dantzer, R., Heijnen, C. J., Kavelaars, A., Laye, S., Capuron, L., 2014: The neuroimmune basis of fatigue. Trends in Neuroscience, 37, 1, 39—46. DOI: 10.1016/j.tins.2013. DOISearch in Google Scholar

14. D’Mello, C., Riazi, K., Le, T., Stevens, K. M., Wang, A., McKay, D. M., et al., 2013: P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J. Neurosci., 33, 14878—14888. DOI: 10.1523/JNEUROSCI.1329-13.2013.10.1523/JNEUROSCI.1329-13.2013670516524027287Open DOISearch in Google Scholar

15. D’Mello, C., Swain, M. G., 2014: Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain, Behav. Immun., 35, 9—20. DOI: 10.1016/j.bbi.2013. DOISearch in Google Scholar

16. D’Mello, Ch., Ronaghan, N., Zaheer, R., Dicay, M., Le, T., MacNaughton, W. K., et al., 2015: Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J. Neurosci., 35, 30, 10821—10830. DOI: 10.1523/JNEUROSCI.0575-15.2015.10.1523/JNEUROSCI.0575-15.2015660511226224864Open DOISearch in Google Scholar

17. EFSA. Scientifc Oopinion on the Maintenance of the List of QPS Biological Agents Intentionally Added to Food and Feed, 2013: EFSA J., 3449, 1—108. DOI: 10.2903/j.efsa.2013.3449.10.2903/j.efsa.2013.3449Open DOISearch in Google Scholar

18. EFSA. Scientifc Opinion on the Update of the List of QPS-recommended Biological Agents Intentionally Added to Food or Feed as Notifed to EFSA, 2017: EFSA J., 15, 3, 1—177. DOI: 10.2903/j.efsa.2017.4664.10.2903/j.efsa.2017.4664701010132625421Open DOISearch in Google Scholar

19. FAO. Guidelines for the Evaluation of Probiotics in Food, 2002: Report of a Joint FAO/WHO Working Group on Drafting Gidelines for the Evaluation of Probiotics in Food. 30.04—01.05.2002, London, Ontario, Kanada. https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf.Search in Google Scholar

20. Flach, J., van der Waal, M. B., van den Nieuwboer, M., Claassen, E., Larsen, O. F. A., 2018: The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Crit. Rev. Food Sci. Nutr., 58, 15, 2570—2584. DOI: 10.1080/10408398.2017.1334624.10.1080/10408398.2017.133462428609116Open DOISearch in Google Scholar

21. Gaggia, F., Mattarelli, P., Biavati, B., 2010: Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol., 141, 15—28. DOI: 10.1016/j.ijfoodmicro.2010. DOISearch in Google Scholar

22. Gaucher, F., Bonnassie, S., Rabah, H., Marchand, P., Blanc, P., Jeantet, R., Jan, G., 2019: Review: Adaptation of beneficial propionibacteria, lactobacilli, and bifidobacteria improves tolerance toward technological and digestive stresses. Front. Microbiol., 10, 41. DOI: 10.3389/fmicb.2019.00841.10.3389/fmicb.2019.00841Open DOISearch in Google Scholar

23. Gorbach, S. L., 2000: Probiotics and gastrointestinal health. Am. J. Gastroenterol., 95, 1, 2—4. DOI: 10.1016/s0002-9270(99)00806-0.10.1016/s0002-9270(99)00806-0Open DOISearch in Google Scholar

24. Hemarajata, P, Versalovic, J., 2013: Effects of probiotics on gut microbiota: mechanisms of intestinal immunodulation and neuromodulation. Therap. Adv. Gastroenterol., 6, 39—51. DOI: 10.1177/1756283X12459294.10.1177/1756283X12459294353929323320049Open DOISearch in Google Scholar

25. Herich, R., 2017: Is the role of IgA in local immunity completely known ? Food Agric. Immunol., 28, 2, 223—237. DOI: 10.1080/09540105.2016.1258547.10.1080/09540105.2016.1258547Open DOISearch in Google Scholar

26. Chandramouli, V., Kalasapathy, K., Peiri, P., Jones, M., 2004: An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. In simulated gastric conditions. J. Microbiol. Methods, 56, 27—35. DOI: 10.1016/j.mimet.2003. DOISearch in Google Scholar

27. Islam, M. A., Yun, C. H., Choi, Y. J., Cho, C. S., 2010: Microencapsulation of live probiotic bacteria. J. Microbiol. Biotechnol., 20, 10, 1367–77. DOI: 10.4014/jmb.1003.03020.10.4014/jmb.1003.0302021030820Search in Google Scholar

28. Isolauri, E., Salminen, S., Ouwehand, A. C., 2004: Microbial-gut interactions in health and disease. Probiotics. Best Practice and Research: Clinical Gastroenterology, 18, 299—313. DOI: 10.1016/j.bpg.2003. DOISearch in Google Scholar

29. Joseph, J. M., Law, C., 2019: Cross-species examination of single- and multi-strain probiotic treatment effects on neuro-psychiatric outcomes. Neurosci. Biobehav. Rev., 99, 160—197. DOI: 10.1016/j.neubiorev.2018. DOISearch in Google Scholar

30. Karaffová, V., Marcinková, E., Bobíková, K., Herich, R., Revajová, V., Stašová, D., et al., 2017: TLR4 and TLR21 expression, MIF, IFN-β, MD-2, CD14 activation, and sIgA production in chickens administered with EFAL41 strain challenged with Campylobacter jejuni. Folia Microbiologica, 62, 89—97. DOI: 10.1007/s12223-016-0475-6.10.1007/s12223-016-0475-627696326Open DOISearch in Google Scholar

31. Kataria, J., Li, N., Wynn, J. L., Neu, J., 2009: Probiotic microbes: do they need to be alive to be beneficial ? Nutr. Rev., 67, 9, 546—550. DOI: 10.1111/j.1753-4887.2009.00226.x.10.1111/j.1753-4887.2009.00226.x19703261Open DOISearch in Google Scholar

32. Kaur, I. P., Chopra, K., Saini, A., 2002: Probiotics: potential pharmaceutical applications. Eur. J. Pharm. Sci., 15, 1, 1—9. DOI: 10.1016/s0928-0987(01)00209-3.10.1016/s0928-0987(01)00209-3Open DOISearch in Google Scholar

33. Lauková, A., Chrastinová, Ľ., Simonová, M.P., Strompfová, V., Plachá, I., Čobanová, K., et al., 2012:Enterococcus faecium AL 41: Its enterocin M and their beneficial use in rabbits husbandry. Probiotics Antimicro. Proteins, 4, 243—249. DOI: 10.1007/s12602-012-9118-7.10.1007/s12602-012-9118-726782184Open DOISearch in Google Scholar

34. Lauková, A., Pogány Simonová, M., Kubašová, I., Gancarčíková, S., Plachá, I., Imrichová Ščerbová, J., et al., 2017: Pilot experiment in chickens challenged with Campylobacter jejuni CCM6191 administered enterocin M-producing probiotic strain Enterococcus faecium CCM8558 to check its protective effect. Czech J. Anim. Sci., 62, 11, 491—500. DOI: 10.17221/12/2017-cjas.10.17221/12/2017-CJASSearch in Google Scholar

35. Lauková, A., Kandričáková, A., Ščerbová, J., Szabóová, R., Plachá, I., Čobanová, K., et al., 2017b: In vivo model experiment using laying hens treated with Enterococcus faecium EM41 from ostrich faeces and its enterocin EM41. Mac. Vet. Rev., 40, 2, 157—166. DOI: 10.1515/macvetrev-2017-0024.10.1515/macvetrev-2017-0024Open DOISearch in Google Scholar

36. Lauková, A., Styková, E., Kubašová, I., Gancarčíková, S., Plachá, I., Mudroňová, D., et al., 2018: Enterocin M and its beneficial effects in horses—a pilot experiment. Probiotics Antimicro. Proteins, 10, 3, 420—426. DOI: 10.1007/s12602-018-9390-2.10.1007/s12602-018-9390-229417475Open DOISearch in Google Scholar

37. Lemme-Dumit, J. M., Polti, M. A., Perdigón, G., Galdeano, C. M., 2018: Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Beneficial Microbes, 9, 1, 153—164. DOI: 10.3920/BM2016.0220.10.3920/BM2016.022029124968Open DOISearch in Google Scholar

38. Letnická, A., Karaffová, V., Levkut, M., Revajová, V., Herich, R., 2017: Influence of oral application of Enterococcus faecium AL41 on TGF-ß4 and IL-17 expression and immunocompetent cell distribution in chickens challenged with Campylobacter jejuni. Acta Vet. Hung., 65, 3, 317—326. DOI: 10.1556/004.2017.031.10.1556/004.2017.03128956488Open DOISearch in Google Scholar

39. Levkut, M., Pistl, J., Lauková, A., Revajová, V., Herich, R., Ševčíková, Z., et al., 2009: Antimicrobial activity of Enterococcus faecium EF 55 against Salmonella Enteritidis in chicks. Acta Vet. Hung., 57, 1, 13—24. DOI: 10.1556/AVet.57.2009. DOISearch in Google Scholar

40. Macpherson, A. J., McCoy, K. D., Johansen, F. E., Brandtzaeg, P., 2008: The immune geography of IgA induction and function. Mucosal Immunol., 1, 11—22. DOI: 10.1038/mi.2007.6.10.1038/mi.2007.619079156Open DOISearch in Google Scholar

41. Maldonado, G. C., Cazorla, S. I., Lemme Dumit, J. M., Vélez, E., Perdigón, G., 2019: Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab., 74, 2, 115—124. DOI: 10.1159/000496426.10.1159/00049642630673668Open DOISearch in Google Scholar

42. Mareková, M., Lauková, A., Skaugen, M., Nes, I., 2007: Isolation and characterization of a new bacteriocin, termed enterocin M, produced by environmental isolate Enterococcus faecium AL41. J. Indust. Microbiol. Biotechnol., 34, 8, 533— 537. DOI: 10.1007/s10295-007-0226-4.10.1007/s10295-007-0226-4Search in Google Scholar

43. Markowiak, P., Slizewska, K., 2017: Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9, 9, 1021. DOI: 10.3390/nu9091021.10.3390/nu9091021Search in Google Scholar

44. Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., et al., 2011: Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr., 105, 755—764. DOI: 10.1017/S0007114510004319.10.1017/S0007114510004319Open DOISearch in Google Scholar

45. Miron, N., Cristea, V., 2012: Enterocytes: active cells in tolerance to food and microbial antigens in the gut. Clin. Exper. Immunol., 167, 3, 405—412. DOI: 10.1111/j.1365-2249.2011.04523.x.10.1111/j.1365-2249.2011.04523.xOpen DOISearch in Google Scholar

46. Mizak, L., Gryko, R., Kwiatek, M., 2012: Probiotics in animal nutrition (In Polish). Życie Weterynaryjne, 87, 9, 736— 741. http://support-pharma.pl/wp-content/uploads/2016/09/ZW_2012-09_02.pdf.Search in Google Scholar

47. Nami, Y., Haghshenas, B., Haghshenas, M., Khosroushahi, A. Y., 2015: Antimicrobial activity and the presence of virulence factors and bacteriocin structural genes in Enterococcus faecium CM33 isolated from ewe colostrum. Front. Microbiol., 6, 782. DOI: 10.3389/fmicb.2015.00782.10.3389/fmicb.2015.00782Open DOISearch in Google Scholar

48. Ng, S. C., Hart, A. L., Kamm, M. A., Stagg, A. J., Knight, S. C., 2009: Mechanisms of action of probiotics: recent advances. Inflam. Bowel Dis., 15, 300–310. DOI: 10.1002/ibd.20602.10.1002/ibd.20602Open DOISearch in Google Scholar

49. Oelschlaeger, T. A., 2010: Mechanisms of probiotic action— A review. Int. J. Med. Microbiol., 300, 1, 57—62. DOI: 10.1016/j.ijmm.2009. DOISearch in Google Scholar

50. Piskoríková., M., 2010: Quality and characterization of existing and new probiotics (EFSA QPS). In Proceedings of Rregulatory Framework Workshop Health Claim Approval of Probiotics in the European Union Issues, Barriers, Success Drivers, 18 June, Košice.Search in Google Scholar

51. Reuter, G., 2001: Probiotics-possibilities and limitations of their application in food, animal feed, and in pharmaceutical preparations for men and animals. Berl. Munch. Tierarztl. Wochenschr., 114, 11—12, 410—419.Search in Google Scholar

52. Sandholm, M., Myllarinen, T., Crittenden, R., Mogensen, G., Fonden, R., Saarela, M., 2005: Technological challenges for future probiotic food. Int. Dairy J., 12, 173—182. DOI: 10.1016/s0958-6946(01)00099-1.10.1016/s0958-6946(01)00099-1Open DOISearch in Google Scholar

53. Sansonetti, P. J., 2004: War and peace at mucosal surfaces. Nat. Rev. Immunol., 4, 953—964. DOI: 10.1038/nri1499.10.1038/nri149915573130Open DOISearch in Google Scholar

54. Simon, O., 2005: Microorganisms as feed additives—probiotics. Advances of Pork Production, 16, 161—167. https://pdfs.semanticscholar.org/b6cc/69c328880e44a89075d6e4583c403361fa20.pdf.Search in Google Scholar

55. Smith, C. J., Emge, J. R., Berzins, K., Lung, L., Khamishon, R., Shah, P., et al., 2014: Probiotics normalize the gut-brain-microbiota axis in immunodeficient mice. Am. J. Physiol. Gastrointest. Liver Physio., 307, 8, 793—802. DOI: 10.1152/ajpgi.00238.2014.10.1152/ajpgi.00238.2014420031425190473Search in Google Scholar

56. Strompfová, V., Kubašová, I., Farbáková, J., Maďari, A., Gancarčíková, S., Mudroňová, D., Lauková, A., 2018: Evaluation of probiotic Lactobacillus fermentum CCM 7421 administration with alginite in dogs. Probiotics and Antimicro. Proteins, 10, 3, 577—588. DOI: 10.1007/s12602-017-9370-y.10.1007/s12602-017-9370-y29256151Open DOISearch in Google Scholar

57. Szabóová, R., Chrastinová, Ľ., Lauková, A., Haviarová, M., Simonová, M., Strompfová, V., et al., 2008: Bacteriocin-producing strain Enterococcus faecium CCM4231 and its use in rabbits. Int. J. Probiotics Prebiotics, 3, 2, 77—82.Search in Google Scholar

58. Szabóová, R., Lauková, A., Chrastinová, Ľ., Strompfová, V., Pogány Simonová, M., Vasilková, Z., et al., 2011: Effect of combined administration of enterocin 4231 and sage in rabbits. Polish J. Vet. Sci., 14, 3, 359—366. DOI: 10.2478/v10181-011-0054-3.10.2478/v10181-011-0054-321957728Open DOISearch in Google Scholar

59. Szabóová, R., Faixová, Z., Maková, Z., Piešová, E., 2018: The difference in the mucus organization between the small and large intestine and its protection od selected natural substances. A review. Folia Veterinaria, 62, 4, 48—55. DOI: 10.2478/fv-2018-0031.10.2478/fv-2018-0031Open DOISearch in Google Scholar

60. Šefcová, M., Levkut, M., Bobíková, K., Karaffová, V., Revajová, V., Maruščáková, I. C., et al., 2019: Cytokine response after stimulation of culture cells by zinc and probiotic strain. In Vitro Cell. Dev. Biol. Anim. DOI: s11626-019-00401-z, https://link.springer.com/article/10.1007%2Fs11626-019-00401-z.Search in Google Scholar

61. Ševčíková, Z., Blanár, J., Lauková, A., Revajová, V., Strompfová, V., Levkut, M., 2016: Effect of Enterococcus faecium EF 55 on morphometry and proliferative activity of intestinal mucosa in broilers infected with Salmonella Enteritidis. J. Vet. Res. (Poland), 60, 3, 261–265. DOI: 10.1515/jvetres-2016-0040.10.1515/jvetres-2016-0040Open DOISearch in Google Scholar

62. Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., et al., 2013: Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology, 144, 1394—1401. DOI: 10.1053/j.gastro.2013. DOISearch in Google Scholar

63. Tiwari, G., Tiwari, R., Pandey, S., Pandey, P., 2012: Promising future of probiotics for human health: Current Scenario. Chronicles of Young Scientists, 3, 1, 17—28.10.4103/2229-5186.94308Search in Google Scholar

64. Vias, U., Ranganathan, N., 2012: Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroent. Res. Pract., 2012, 16 pp. DOI: 10.1155/2012/872716.10.1155/2012/872716345924123049548Open DOISearch in Google Scholar

65. Vidhyalakshmi, R., Bhakyaraj, R., Subhasree, R. S., 2009: Encapsulation “The future of probiotics”—A review. Adv. Biol. Res., 3, 3—4, 96—103. https://pdfs.semanticscholar.org/70e2/4edc72958a62b5ffc6fc6f8a187c3e5133e6.pdf.Search in Google Scholar

66. Wang, S., Li, H., Du, C., Liu, Q., Yang, D., Chen, L., et al., 2018: Effects of dietary supplementation with Lactobacillus acidophilus on the performance, intestinal physical barrier function, and the expression of NOD-like receptors in weaned piglets. Peer J., 6, 6060. DOI: 10.7717/peerj.6060.10.7717/peerj.6060630278130588399Open DOISearch in Google Scholar

67. Wells, J. M., Rossi, O., Meijerink, M., van Baarlen, P., 2011: Epithelial crosstalk at the microbiota-mucosal interface. Proc. Nat. Academy Sci. USA, 108, 1, 4607—4614. DOI: 10.1073/pnas.1000092107.10.1073/pnas.1000092107306360520826446Open DOISearch in Google Scholar

68. Xu, X., Luo, D., Bao, Y., Liao, X., Wu, J., 2018: Characterization of diversity and probiotic efficiency of the autochthonous lactic acid bacteria in the fermentation of selected raw fruit and vegetable juices. Front. Microbiol., 9, 2539. DOI: 10.3389/fmicb.2018.02539.10.3389/fmicb.2018.02539620599230405588Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo