1. bookVolume 63 (2019): Issue 1 (March 2019)
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

In Vitro Inhibition of Biofilm Formation by Staphylococcus Aureus Under the Action of Selected Plant Extracts

Published Online: 06 Apr 2019
Volume & Issue: Volume 63 (2019) - Issue 1 (March 2019)
Page range: 48 - 53
Received: 10 Nov 2018
Accepted: 08 Mar 2019
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

In our study we investigated the ability of selected plant extracts to inhibit the formation of biofilms produced by Staphylococcus aureus. In the first phase, we focused on the optimisation of conditions for the correct method of an approach. For optimisation, we standardized the culture media and the bacterial culture in order to obtain interpretable results. The TSB (Tryptone Soya Broth) medium was used for the preparation of an inoculum from the bacterial suspension. For the in vitro tests of antibiofilm activity against the species Staphylococcus aureus CCM 3953, we used propylene glycol (PG) plant extracts from sage and rosemary, prepared in three different concentrations of 0.01 %, 0.05 % and 0.1 %. The tests were implemented in microtitre plates using crystal violet dye at 0.1 % concentration for visualization of the intensity of a biofilm. The results were obtained, by spectrophotometric measurements at a wavelength of 550 nm. Both rosemary and sage plant extracts had a significant effect on the formation of a biofilm by S. aureus. The antibiofilm activity was concentration-dependent as the formation of biofilm was reduced more effectively with increasing concentration of the extracts. The best antibiofilm activity was observed with 0.1 % rosemary extract resulting in 94 % inhibition of the biofilm formation.

Keywords

1. Al-Bakri, A. G., Othman, G., Afifi, F. U., 2010: Determination of the antibiofilm, antiadhesive, and anti-MRSA activities of seven Salvia species. Pharmacognosy Magasine, 6 (24), 264—270. DOI: 10.4103/0973-1296.71786.10.4103/0973-1296.71786299213721120026Open DOISearch in Google Scholar

2. Arciola, C. R., Campoccia, D., Ravaioli, S., Montanaro, L., 2015: Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front. Cell Infect. Microbiol., 5, 7, PMID: 25713785. DOI: 10.3389/fcimb.2015.00007.10.3389/fcimb.2015.00007432283825713785Search in Google Scholar

3. Budzyńska, A., Wieckowska-Szakiel, M., Sadowska, B., Kalemba, D., Rozalska, B., 2011: Antibiofilm activity of selected plant essential oils and their major components. Polish Journal of Microbiology, 60 (1), 35 41.10.33073/pjm-2011-005Search in Google Scholar

4. Ceylan, O., 2014: The in vitro antibiofilm activity of Rosmarinus officinalis L. essential oil against multiple antibiotic resistant Pseudomonas sp. and Staphylococcus sp. Journal of Food, Agriculture and Environment, 12 (34), 8286.Search in Google Scholar

5. Charaklis, W. G., Marshall, K. C. (Eds.), 1990:Biofilms. John Wiley and Sons, New York, 796 pp.Search in Google Scholar

6. de Oliveira, J. R., de Jesus, D., Figueira, F. E., de Oliveira, F. E., Pacheco Soares, C. P. Camargo, S. E. A., et al., 2017: Biological activities of Rosmarinus officinalis L. (rosemary) extract as analysed in microorganisms and cells. Exp. Biol. Med., 242 (6), 625634. DOI: 10.1177/1535370216688571.10.1177/1535370216688571568526228093936Open DOISearch in Google Scholar

7. Hammer, K. A., Carson, C. F., Riley, T. V., 1999: Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol., 86 (6), 985990.10.1046/j.1365-2672.1999.00780.x10438227Search in Google Scholar

8. Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., Ciofu, O., 2010: Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents, 35 (4), 322332. https://hal.archives-ouvertes.fr/hal-00567285.10.1016/j.ijantimicag.2009.12.01120149602Search in Google Scholar

9. Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., et al., 2017: Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81 (1), 711. DOI: 10.1016/j.jcma.2017.07.012.10.1016/j.jcma.2017.07.01229042186Open DOISearch in Google Scholar

10. Jardak, M., Elloumi-Mseddi, J., Aifa, S., 2017: Chemical composition, anti-biofilm activity and potential cytotoxic effect on cancer cells of Rosmarinus officinalis L. essential oil from Tunisia. Lipids Health Dis., 16, 190. DOI: 10.1186/s12944-017-0580-9.10.1186/s12944-017-0580-9562579228969677Search in Google Scholar

11. Kumar, A., Alam, A., Rani, M., Ehtesham, N. Z., Hasnain, S. E., 2017: Biofilms: Survival and defense strategy for pathogens. Int. J. Med. Microb., 307 (8), 481489. DOI: 10.1016/j.ijmm.2017.09.016.10.1016/j.ijmm.2017.09.01628950999Search in Google Scholar

12. Nogueira, J., Costa, R., da Cunha, M., Cavalcante, T., 2017: Antibiofilm activity of natural substances derived from plants. African Journal of Microbiology Research, 11 (26), 10511060. DOI: 10.5897/AJMR2016.8180.10.5897/AJMR2016.8180Open DOISearch in Google Scholar

13. O’Gara, J. P., 2007: ica and beyond: biofilm mechanism and regulation of Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett., 270 (2), 17988. DOI:10.1111/j.1574-6968.2007.00688.x.10.1111/j.1574-6968.2007.00688.x17419768Open DOISearch in Google Scholar

14. O’Toole G. A., 2011: Microtiter dish biofilm formation assay. J. Vis. Exp., 47. http://www.jove.com/details.php?id=2437. DOI: 10.3791/2437.10.3791/2437318266321307833Open DOISearch in Google Scholar

15. Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., Sintim, H. O., 2015: Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7 (4), 493512. DOI: 10.4155/fmc.15.6.10.4155/fmc.15.625875875Open DOISearch in Google Scholar

16. Ramasamy, M., Lee, J. H., Lee, J., 2017: Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids and Surfaces B Biointerfaces, 160, 639648. DOI: 10.1016/j.colsurfb.2017.10.018.10.1016/j.colsurfb.2017.10.01829031224Open DOISearch in Google Scholar

17. Rohde, H., Frankenberger, S., Zahringer, U., Mack, D., 2010: Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis bio-film formation and pathogenesis of biomaterial-associated infections. Eur. J. Cell Biol., 89 (1), 10311. DOI: 10.1016/j.ejcb.2009.10.005.10.1016/j.ejcb.2009.10.00519913940Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo