1. bookVolume 63 (2019): Issue 1 (March 2019)
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
access type Open Access

Effects of Cell Seeding Methods on Chondrogenic Differentiation of Rat Mesenchymal Stem Cells in Polyhydroxybutyrate/Chitosan Scaffolds

Published Online: 06 Apr 2019
Volume & Issue: Volume 63 (2019) - Issue 1 (March 2019)
Page range: 6 - 16
Received: 18 Jan 2019
Accepted: 22 Feb 2019
Journal Details
License
Format
Journal
eISSN
2453-7837
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English
Abstract

The aim of our study was to examine the effects of passive and active cell seeding techniques on in vitro chondrogenic differentiation of mesenchymal stem cells (MSC) isolated from rat bone marrow and seeded on porous biopolymer scaffolds based on polyhydroxybutyrate/chitosan (PCH) blends. This paper is focused on the distribution of the cells on and in the scaffolds, since it influences the uniformity of the created extracellular matrix (ECM), as well as the homogenity of the distribution of chondrogenic markers in vitro which ultimately affects the quality of the newly created tissue after in vivo implantation. The three types of cell-scaffold constructs were examined by: fluorescence microscopy, SEM, histology and quantitative analysis of the glycosaminoglycans after chondrogenic cultivation. The results demonstrated that the active cells seeded via the centrifugation of the cell suspension onto the scaffold guaranteed an even distribution of cells on the bulk of the scaffold and the uniform secretion of the ECM products by the differentiated cells.

Keywords

1. Barry, F. P., Murphy, J. M., 2004: Review Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol, 36, 568—584. DOI: 10.1016/j.biocel.2003.11.001.10.1016/j.biocel.2003.11.001Open DOISearch in Google Scholar

2. Bornes, T. D., Jomha, N. M., Mulet-Sierra, A., Adesida, A. B., 2016: Optimal seeding densities for in vitro chondrogenesis of two- and three-dimensional-isolated and expanded bone marrow-derived mesenchymal stromal stem cells within a porous collagen scaffold. Tissue Engn. C: Methods, 22, 208— 220. DOI: 10.1089/ten.tec.2015.036558.10.1089/ten.tec.2015.036558Open DOISearch in Google Scholar

3. Collins, M. N., Birkinshaw, C., 2013: Hyaluronic acid based scaffolds for tissue engineering—A review. Carb. Pol., 92 (2), 1262—1279. DOI 10.1016/j.carbpol.2012.10.028.10.1016/j.carbpol.2012.10.028Open DOISearch in Google Scholar

4. Deng, Y., Lin, X. S., Zheng. Z., Deng. J. G., Chen, J. CH., Ma, H., Chen, G. Q., 2003: Poly (hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials, 24, 4273—4281.10.1016/S0142-9612(03)00367-3Search in Google Scholar

5. Deng, CH. M., He, L. Z., Zhao, M., Yang, D., Liu, Y. 2007: Biological properties of the chitosan-gelatin sponge wound dressing. Carb. Pol., 69, 583—589. DOI: 10.1016/j.carbpol.2007.01.014.10.1016/j.carbpol.2007.01.014Open DOISearch in Google Scholar

6. Dominici, M., Le Blanc, K., Meller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., et al., 2006: Minimal criteria for defining mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315—317.10.1080/14653240600855905Search in Google Scholar

7. Ehlers, E. M., Fuss, M., Rohwedel, J., Russlies, M., Kuehnel, W., Behrens, P., 1999: Development of a biocomposite to fill out articular cartilage lesions. Light, scanning and transmission electron microscopy of sheep chondrocytes cultured on a collagen I/III sponge. Ann. Anat., 181 (6), 513—518. DOI: 10.1016/S0940-9602(99)80055-7.10.1016/S0940-9602(99)80055-7Open DOISearch in Google Scholar

8. Fernandez Vallone, V. B., Romaniuk, M. A., Choi, H., Labovsky, V., Otaeugi, J., Chasseing, N. A., 2013: Review: Mesenchymal stem cells and their use in therapy: What has been achieved ? Differentiation, 85 (1—2), 1—10.10.1016/j.diff.2012.08.004Search in Google Scholar

9. Godbey, W. T., Hindy, B. S. S., Sherman, M. E., Atala, A., 2004: A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials, 25, 2799—2805. DOI: 10.1016/j.biomaterials.2003.09.056.10.1016/j.biomaterials.2003.09.056Open DOISearch in Google Scholar

10. Gogolewski, S., 2000: Bioresorbable polymers in trauma and bone surgery. Injury, 31, S‒D28‒32.10.1016/S0020-1383(00)80020-0Search in Google Scholar

11. Griffon, D. J., Sedighi, M. R., Schaeffer, D. V., Eurell, J. A., Johnson, A. L., 2006: Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomaterialia, 2 (3), 313—320.10.1016/j.actbio.2005.12.007Search in Google Scholar

12. Harvanova, D., Rosocha, Bakos, D., Švihla, R., Vasko, G., Hornak, S., et al., 2009: Collagen/hyaluronan membrane as a scaffold for chondrocyte cultivation. Biologia, 64 (5), 1032— 1038. DOI: 10.2478/s11756-009-0171-y.10.2478/s11756-009-0171-yOpen DOISearch in Google Scholar

13. Chen, Y. L., Lee, H. P., Chan, H. Y., Sung, L. Y., Chen, H. CH., Hu, Y. CH., 2007: Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials, 28 (14), 2294—2305. DOI: 10.1016/j.biomaterials.2007.01.027.10.1016/j.biomaterials.2007.01.027Search in Google Scholar

14. Chen, G., Akahane, D., Kawazoe, N., Yamamoto, K., Tateishi, T., 2008: Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge. Mat. Sci. Engin. C, 28 (1), 195—201. DOI: 10.1016/j.msec.2006.12.009.10.1016/j.msec.2006.12.009Open DOISearch in Google Scholar

15. Cho, J. H., Kim, S. H., Park, K. D., Jung, M. CH., Yang, W. I., Han, S. W., et al., 2004: Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials, 25 (26), 5743—5751. DOI: 10.1016/j.biomaterials.2004.01.051.10.1016/j.biomaterials.2004.01.051Open DOISearch in Google Scholar

16. Johnstone, B., Hering, T. M., Caplan, A., Goldberg, V. M., Yoo, J. U., 1998:In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res., 238 (1), 265—272. DOI: 10.1006/excr.1997.3858.10.1006/excr.1997.3858Open DOISearch in Google Scholar

17. Kessler, M. W., Grande, D. A, 2008: Review: Tissue engineering and cartilage. Organogenesis, 4 (1), 28—32. https://doi.org/10.4161/org.6116.10.4161/org.6116Open DOISearch in Google Scholar

18. Liu, C., Xia, Z., Czernuszka, J. T, 2007: Design and development of three-dimensional scaffolds for tissue engineering. Chem. Eng. Res. Design, 85(A7), 1051—1064.10.1205/cherd06196Search in Google Scholar

19. Madihally, S. V., Matthew, H. W. T., 1999: Porous chitosan scaffolds for tissue engineering. Biomaterials, 20 (12), 1133— 1142. DOI: 10.1016/S0142-9612(99)00011-3.10.1016/S0142-9612(99)00011-3Open DOISearch in Google Scholar

20. Malafaya, P. B., Silva, G. A., Reis, R. L., 2007: Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Del. Rev., 59 (4—5), 207—233. DOI:10.1016/j.addr.2007.03.012.10.1016/j.addr.2007.03.012Open DOISearch in Google Scholar

21. Medvecky, L., Giretova, M., Stulajterova, R., 2014: Properties and in vitro characterization of polyhydroxybutyratechitosan scaffolds prepared by modified precipitation method. J. Mat. Sci.: Mat. Med., 25 (3), 777—789. DOI:10.1007/s10856-013-5105-0.10.1007/s10856-013-5105-0Open DOISearch in Google Scholar

22. Mollon, B., Kandel, R., Chahai, J., Theodoropoulos, J., 2013: The clinical status of cartilage tissue regeneration in humans. Osteoarthritis and Cartilage, 21 (12), 1824—1833. DOI: 10.1016/j.joca.2013.08.024.10.1016/j.joca.2013.08.024Open DOISearch in Google Scholar

23. Muzzarelli, R. A. A., 2009: Review: Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carb. Pol., 76 (2), 167—182. DOI: 10.1016/j.carbpol.2008.11.002.10.1016/j.carbpol.2008.11.002Open DOISearch in Google Scholar

24. Nair, S. L., Laurencin, C. T., 2007: Biodegradable polymers as biomaterials. Prog. Polym. Sci., 32, 762—798. http://dx.doiorg/10.1016/j.progpolymsci.2007.05.017.10.1016/j.progpolymsci.2007.05.017Search in Google Scholar

25. Nehrer, S., Breinan, H. A., Ramappa, A., Young, G., Shortkroff, S., Louie, L. K., et al., 1997: Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials, 18 (11), 769—776.10.1016/S0142-9612(97)00001-XSearch in Google Scholar

26. Pelttari, K., Steck, E., Richter, W., 2008: The use of mesenchymal stem cells for chondrogenesis injury, Int. J. Care Inj., 39S1, S58—S65. DOI:10.1016/j.injury.2008.01.038.10.1016/j.injury.2008.01.038Open DOISearch in Google Scholar

27. Puppi, D., Chiellini, F., Piras, A. M., Chiellini, E., 2010: Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35, 403—444.10.1016/j.progpolymsci.2010.01.006Search in Google Scholar

28. Solchaga, L. A., Penick, K. J., Welter, J. F., 2011: Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: Tips and tricks. Methods Mol. Biol., 698, 253—278. DOI: 10.1007/978-1-60761-999-4_20.10.1007/978-1-60761-999-4_20Open DOISearch in Google Scholar

29. Tan, H., Chu, C.R., Payne, K. A., Marra, K. G., 2009: Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Bio-materials, 30(13), 2499—2506. DOI: 10.1016/j.biomaterials.2008.12.080.10.1016/j.biomaterials.2008.12.080Open DOISearch in Google Scholar

30. Tan, L., Ren, Y., Kuijer, R., 2012: A 1-min method for homogenous cell seeding in porous scaffolds. J. Biomat. Applic., 877—898. DOI: 10.1177/0885328210389504.10.1177/0885328210389504Open DOISearch in Google Scholar

31. Tang, X., Fan, L., Pei, M., Zeng, L., Ge, Z., 2015: Evolving concepts of chondrogenic differentiation: history, state-ofthe-art and future perspectives. Eur. Cells Mater., 30, 12—27.10.22203/eCM.v030a02Search in Google Scholar

32. Vater, C., Kasten, P., Stiehler, M., 2011: Review. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia, 7 (2), 463—477. DOI: 10.1016/j.actbio.2010.07.037.10.1016/j.actbio.2010.07.037Open DOISearch in Google Scholar

33. Wang, Y., Bian, Y. Z., Wu, Q., Chen, G. Q., 2008: Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Bio-materials, 29 (19), 2858—2868. DOI: 10.1016/j.biomaterials.2008.03.021.10.1016/j.biomaterials.2008.03.021Open DOISearch in Google Scholar

34. Yamane, S., Iwasaki, N., Majima, T., Fukanoshi, T., Masuko, T., Harada, K., et al., 2005: Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials, 26 (6), 611—619. DOI: 10.1016/j.biomaterials.2004.03.01310.1016/j.biomaterials.2004.03.013Open DOISearch in Google Scholar

35. Yang, B., Li, X. Y., Shi, S., Kong, X. Y., Guo, G., Huang, M. J., et al., 2010: Preparation and characterization of a novel chitosan scaffold. Carb. Pol., 80 (3), 860—865.10.1016/j.carbpol.2009.12.044Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo